cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347209 Emirps in both base 2 and base 10.

Original entry on oeis.org

13, 37, 71, 97, 113, 167, 199, 337, 359, 701, 709, 739, 907, 937, 941, 953, 967, 1033, 1091, 1109, 1153, 1181, 1201, 1217, 1229, 1259, 1439, 1471, 1487, 1669, 1733, 1789, 1811, 1933, 1949, 3019, 3067, 3083, 3089, 3121, 3163, 3221, 3299, 3343, 3389, 3433, 3469, 3511, 3527, 3571, 3583, 3643, 3719
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 23 2021

Keywords

Comments

Primes p such that A030101(p) and A004086(p) are primes other than p.
Are there any cases where A030101(p) = A004086(p), i.e. emirps in A081434?

Examples

			a(3) = 71 is a term because 71 is prime, its base-10 reversal 17 is a prime other than 71, and its base-2 reversal 113 is a prime other than 71.
		

Crossrefs

Intersection of A006567 and A080790.
Subset of A136634.

Programs

  • Maple
    filter:= proc(n) local L,nL,i,r,s;
      if not isprime(n) then return false fi;
      L:= convert(n,base,10);
      nL:= nops(L);
      r:= add(10^(nL-i)*L[i],i=1..nL);
      if r=n or not isprime(r) then return false fi;
      L:= convert(n,base,2);
      nL:= nops(L);
      s:=add(2^(nL-i)*L[i],i=1..nL);
      s <> n and isprime(s)
    end proc:
    select(filter, [seq(i,i=3..10000,2)]);
  • Mathematica
    Select[Range[4000], (ir = IntegerReverse[#]) != # && PrimeQ[#] && PrimeQ[ir] && (ir2 = IntegerReverse[#, 2]) != # && PrimeQ[ir2] &] (* Amiram Eldar, Aug 23 2021 *)
    Select[Prime[Range[600]],!PalindromeQ[#]&&FromDigits[Reverse[IntegerDigits[#,2]],2]!=#&&AllTrue[{IntegerReverse[#],FromDigits[Reverse[IntegerDigits[#,2]],2]},PrimeQ]&] (* Harvey P. Dale, Oct 13 2022 *)
  • Python
    from sympy import isprime, primerange
    def ok(p):
        s, b = str(p), bin(p)[2:]
        if s == s[::-1] or b == b[::-1]: return False
        return isprime(int(s[::-1])) and isprime(int(b[::-1], 2))
    print(list(filter(ok, primerange(1, 3720)))) # Michael S. Branicky, Aug 24 2021