A347227 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{d|n} mu(d)*mu(n/d)*d^k.
1, 1, -2, 1, -3, -2, 1, -5, -4, 1, 1, -9, -10, 2, -2, 1, -17, -28, 4, -6, 4, 1, -33, -82, 8, -26, 12, -2, 1, -65, -244, 16, -126, 50, -8, 0, 1, -129, -730, 32, -626, 252, -50, 0, 1, 1, -257, -2188, 64, -3126, 1394, -344, 0, 3, 4, 1, -513, -6562, 128, -15626, 8052, -2402, 0, 9, 18, -2
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... -2, -3, -5, -9, -17, -33, ... -2, -4, -10, -28, -82, -244, ... 1, 2, 4, 8, 16, 32, ... -2, -6, -26, -126, -626, -3126, ... 4, 12, 50, 252, 1394, 8052, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := DivisorSum[n, MoebiusMu[#] * MoebiusMu[n/#] * #^k &]; Table[T[n - k + 1, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Aug 24 2021 *)
-
PARI
T(n, k) = sumdiv(n, d, moebius(d)*moebius(n/d)*d^k);
Formula
Dirichlet g.f. of column k: 1/(zeta(s)*zeta(s-k)).