cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347228 Dirichlet inverse of A344695, gcd(sigma(n), psi(n)).

Original entry on oeis.org

1, -3, -4, 8, -6, 12, -8, -24, 15, 18, -12, -32, -14, 24, 24, 72, -18, -45, -20, -48, 32, 36, -24, 96, 35, 42, -60, -64, -30, -72, -32, -216, 48, 54, 48, 120, -38, 60, 56, 144, -42, -96, -44, -96, -90, 72, -48, -288, 63, -105, 72, -112, -54, 180, 72, 192, 80, 90, -60, 192, -62, 96, -120, 648, 84, -144, -68, -144, 96
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2021

Keywords

Comments

This is not multiplicative because A344695 is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 108 = 4*27, where a(108) = -484 <> -480 = 8 * -60 = a(4) * a(27).
Conjecture: No zeros occur as terms. Checked up to n = 2^21.

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    v347228 = DirInverseCorrect(vector(up_to,n,A344695(n)));
    A347228(n) = v347228[n];

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A344695(n/d) * a(d).
a(n) = A347229(n) - A344695(n).

A347231 Difference between A344695 [gcd(psi(n),sigma(n))] and its Möbius transform.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 1, 4, 8, 1, 10, 1, 10, 9, 3, 1, 9, 1, 16, 11, 14, 1, 6, 6, 16, 1, 22, 1, 42, 1, 1, 15, 20, 13, -5, 1, 22, 17, 8, 1, 54, 1, 34, 21, 26, 1, 10, 8, 13, 21, 40, 1, 6, 17, 10, 23, 32, 1, 54, 1, 34, 29, 3, 19, 78, 1, 52, 27, 74, 1, 9, 1, 40, 19, 58, 19, 90, 1, 16, 4, 44, 1, 74, 23, 46, 33, 14, 1, 48
Offset: 1

Views

Author

Antti Karttunen, Aug 25 2021

Keywords

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    A347231(n) = -sumdiv(n,d,(dA344695(d));

Formula

a(n) = A344695(n) - A347230(n).
a(n) = -Sum_{d|n, dA008683(n/d) * A344695(d).
Showing 1-2 of 2 results.