cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A346485 Möbius transform of A342001, where A342001(n) = A003415(n)/A003557(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 2, 1, 7, 6, 1, 1, 1, 1, 4, 8, 11, 1, 2, 1, 13, 1, 6, 1, 14, 1, 1, 12, 17, 10, 0, 1, 19, 14, 4, 1, 20, 1, 10, 4, 23, 1, 2, 1, 1, 18, 12, 1, 1, 14, 6, 20, 29, 1, 8, 1, 31, 6, 1, 16, 32, 1, 16, 24, 34, 1, 0, 1, 37, 2, 18, 16, 38, 1, 4, 1, 41, 1, 12, 20, 43, 30, 10, 1, 4, 18, 22, 32, 47
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2021

Keywords

Comments

Conjecture 1: After the initial zero, the positions of other zeros is given by A036785.
Conjecture 2: No negative terms. Checked up to n = 2^24.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A342001(d).
Dirichlet g.f.: Product_{p prime} (1+p^(1-s)-p^(-s)) * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)). - Sebastian Karlsson, May 08 2022
Sum_{k=1..n} a(k) ~ c * A065464 * n^2 / 2, where c = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2))*PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384... - Vaclav Kotesovec, Mar 04 2023

A347126 a(n) = A347129(A276086(n)).

Original entry on oeis.org

0, 1, 1, 10, 3, 21, 1, 14, 16, 124, 39, 246, 3, 27, 33, 222, 72, 423, 6, 44, 56, 344, 114, 636, 10, 65, 85, 490, 165, 885, 1, 18, 20, 164, 51, 330, 24, 236, 284, 1976, 636, 3804, 57, 438, 552, 3468, 1143, 6462, 104, 696, 904, 5296, 1776, 9624, 165, 1010, 1340, 7460, 2535, 13290, 3, 33, 39, 282, 90, 549, 51, 414, 516
Offset: 0

Views

Author

Antti Karttunen, Aug 25 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A347129(A276086(n)).

A347396 a(n) = A347395(A276086(n)), where A347395 is Dirichlet convolution of Liouville's lambda with A342001.

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 5, 6, 14, 5, 9, 1, 2, 3, 5, 2, 3, 2, 6, 8, 16, 6, 10, 2, 3, 5, 7, 3, 4, 1, 7, 8, 20, 7, 13, 10, 34, 44, 92, 34, 58, 7, 13, 20, 32, 13, 19, 16, 40, 56, 104, 40, 64, 13, 19, 32, 44, 19, 25, 1, 2, 3, 5, 2, 3, 5, 9, 14, 22, 9, 13, 2, 3, 5, 7, 3, 4, 6, 10, 16, 24, 10, 14, 3, 4, 7, 9, 4, 5, 2, 8, 10, 22
Offset: 0

Views

Author

Antti Karttunen, Sep 02 2021

Keywords

Comments

The scatter plot looks quite peculiar. - Antti Karttunen, Sep 20 2021

Crossrefs

Programs

Showing 1-3 of 3 results.