cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347236 a(n) = Sum_{d|n} A061019(d) * A003961(n/d), where A061019 negates the primes in the prime factorization, while A003961 shifts the factorization one step towards larger primes.

Original entry on oeis.org

1, 1, 2, 7, 2, 2, 4, 13, 19, 2, 2, 14, 4, 4, 4, 55, 2, 19, 4, 14, 8, 2, 6, 26, 39, 4, 68, 28, 2, 4, 6, 133, 4, 2, 8, 133, 4, 4, 8, 26, 2, 8, 4, 14, 38, 6, 6, 110, 93, 39, 4, 28, 6, 68, 4, 52, 8, 2, 2, 28, 6, 6, 76, 463, 8, 4, 4, 14, 12, 8, 2, 247, 6, 4, 78, 28, 8, 8, 4, 110, 421, 2, 6, 56, 4, 4, 4, 26, 8, 38, 16
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of A003961 and A061019.
Dirichlet convolution of A003973 and A158523.
Multiplicative because A003961 and A061019 are.
All terms are positive because all terms of A347237 are nonnegative and A347237(1) = 1.
Union of sequences A001359 and A108605 (= 2*A001359) seems to give the positions of 2's in this sequence.

Crossrefs

Cf. A000040, A001223, A001359, A003961, A003973, A061019, A108605, A158523, A347237 (Möbius transform), A347238 (Dirichlet inverse), A347239.
Cf. also A347136.
Cf. A151800.

Programs

  • Mathematica
    f[p_, e_] := ((np = NextPrime[p])^(e + 1) - (-p)^(e + 1))/(np + p); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 02 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A061019(n) = (((-1)^bigomega(n))*n);
    A347236(n) = sumdiv(n,d,A061019(d)*A003961(n/d));

Formula

a(n) = Sum_{d|n} A003961(n/d) * A061019(d).
a(n) = Sum_{d|n} A003973(n/d) * A158523(d).
a(n) = Sum_{d|n} A347237(d).
a(n) = A347239(n) - A347238(n).
For all n >= 1, a(A000040(n)) = A001223(n).
Multiplicative with a(p^e) = (A151800(p)^(e+1)-(-p)^(e+1))/(A151800(p)+p). - Sebastian Karlsson, Sep 02 2021

A347137 a(n) = Sum_{d|n} phi(d) * A003961(n/d), where A003961 shifts the prime factorization of its argument one step towards larger primes, and phi is Euler totient function.

Original entry on oeis.org

1, 4, 7, 14, 11, 28, 17, 46, 41, 44, 23, 98, 29, 68, 77, 146, 35, 164, 41, 154, 119, 92, 51, 322, 97, 116, 223, 238, 59, 308, 67, 454, 161, 140, 187, 574, 77, 164, 203, 506, 83, 476, 89, 322, 451, 204, 99, 1022, 229, 388, 245, 406, 111, 892, 253, 782, 287, 236, 119, 1078, 127, 268, 697, 1394, 319, 644, 137, 490
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with the prime shift function (A003961). Multiplicative because both A000010 and A003961 are.
Dirichlet convolution of the identity function (A000027) with the prime shifted phi (A003972).
Möbius transform of A347136.

Crossrefs

Cf. A000010, A000027, A000040, A001043, A003961, A003972, A008683, A151800, A347122, A347136 (inverse Möbius transform).
Cf. also A018804, A347237.

Programs

  • Mathematica
    f[p_, e_] := (q = NextPrime[p])^e + (p - 1)*(q^e - p^e)/(q - p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2023 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A347137(n) = sumdiv(n,d,eulerphi(n/d)*A003961(d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A003961(d).
a(n) = Sum_{d|n} d * A003972(n/d).
a(n) = Sum_{d|n} A008683(n/d) * A347136(d).
a(n) = A347122(n) + 2*A000010(n).
a(A000040(n)) = A001043(n) - 1.
Multiplicative with a(p^e) = q(p)^e + (p-1)*(q(p)^e - p^e)/(q(p) - p), where q(p) = nextprime(p) = A151800(p). - Amiram Eldar, Sep 16 2023
Showing 1-2 of 2 results.