cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347236 a(n) = Sum_{d|n} A061019(d) * A003961(n/d), where A061019 negates the primes in the prime factorization, while A003961 shifts the factorization one step towards larger primes.

Original entry on oeis.org

1, 1, 2, 7, 2, 2, 4, 13, 19, 2, 2, 14, 4, 4, 4, 55, 2, 19, 4, 14, 8, 2, 6, 26, 39, 4, 68, 28, 2, 4, 6, 133, 4, 2, 8, 133, 4, 4, 8, 26, 2, 8, 4, 14, 38, 6, 6, 110, 93, 39, 4, 28, 6, 68, 4, 52, 8, 2, 2, 28, 6, 6, 76, 463, 8, 4, 4, 14, 12, 8, 2, 247, 6, 4, 78, 28, 8, 8, 4, 110, 421, 2, 6, 56, 4, 4, 4, 26, 8, 38, 16
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Dirichlet convolution of A003961 and A061019.
Dirichlet convolution of A003973 and A158523.
Multiplicative because A003961 and A061019 are.
All terms are positive because all terms of A347237 are nonnegative and A347237(1) = 1.
Union of sequences A001359 and A108605 (= 2*A001359) seems to give the positions of 2's in this sequence.

Crossrefs

Cf. A000040, A001223, A001359, A003961, A003973, A061019, A108605, A158523, A347237 (Möbius transform), A347238 (Dirichlet inverse), A347239.
Cf. also A347136.
Cf. A151800.

Programs

  • Mathematica
    f[p_, e_] := ((np = NextPrime[p])^(e + 1) - (-p)^(e + 1))/(np + p); a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 02 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A061019(n) = (((-1)^bigomega(n))*n);
    A347236(n) = sumdiv(n,d,A061019(d)*A003961(n/d));

Formula

a(n) = Sum_{d|n} A003961(n/d) * A061019(d).
a(n) = Sum_{d|n} A003973(n/d) * A158523(d).
a(n) = Sum_{d|n} A347237(d).
a(n) = A347239(n) - A347238(n).
For all n >= 1, a(A000040(n)) = A001223(n).
Multiplicative with a(p^e) = (A151800(p)^(e+1)-(-p)^(e+1))/(A151800(p)+p). - Sebastian Karlsson, Sep 02 2021

A347238 Dirichlet inverse of A347236.

Original entry on oeis.org

1, -1, -2, -6, -2, 2, -4, 0, -15, 2, -2, 12, -4, 4, 4, 0, -2, 15, -4, 12, 8, 2, -6, 0, -35, 4, 0, 24, -2, -4, -6, 0, 4, 2, 8, 90, -4, 4, 8, 0, -2, -8, -4, 12, 30, 6, -6, 0, -77, 35, 4, 24, -6, 0, 4, 0, 8, 2, -2, -24, -6, 6, 60, 0, 8, -4, -4, 12, 12, -8, -2, 0, -6, 4, 70, 24, 8, -8, -4, 0, 0, 2, -6, -48, 4, 4, 4, 0, -8
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2021

Keywords

Comments

Multiplicative because A347236 is.
It seems that A046099 gives the positions of zeros.
This follows from the formula for a(p^e). - Sebastian Karlsson, Sep 01 2021

Crossrefs

Programs

  • PARI
    up_to = 16384;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A061019(n) = (((-1)^bigomega(n))*n);
    A347236(n) = sumdiv(n,d,A061019(d)*A003961(n/d));
    v347238 = DirInverseCorrect(vector(up_to,n,A347236(n)));
    A347238(n) = v347238[n];

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A347236(n/d) * a(d).
a(n) = A347239(n) - A347236(n).
For all n >= 1, a(A000040(n)) = -A001223(n).
Multiplicative with a(p^e) = p - A151800(p) if e = 1, -p*A151800(p) if e = 2 and 0 if e > 2. - Sebastian Karlsson, Sep 01 2021
Showing 1-2 of 2 results.