A347245 Number of iterations of the map x -> A000593(x), when starting from x = n, needed to reach a number whose largest prime factor is at least as large as that of n itself (= A006530(n)). If 1 is reached without encountering such a number, then a(n) = 0.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 1
Keywords
Examples
For n = 55 = 5*11, on the first iteration we get A000593(55) = 72 = 2^3 * 3^2, but both 2 and 3 are less than 11, thus on the second iteration, we get A000593(72) = 13, which is the first time when the largest prime factor is larger than that of 55 (13 > 11), thus a(55) = 2.
Comments