cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347278 First member p(m) of the m-th twin prime pair such that d(m) > 0 and d(m-1) < 0, with d(k) = k/Integral_{x=2..p(k)} 1/log(x)^2 dx - C, C = 2*A005597 = A114907.

Original entry on oeis.org

1369391, 1371989, 1378217, 1393937, 1418117, 1426127, 1428767, 1429367, 1430291, 1494509, 1502141, 1502717, 1506611, 1510307, 35278697, 35287001, 35447171, 35468429, 35468861, 35470271, 35595869, 45274121, 45276227, 45304157, 45306827, 45324569, 45336461, 45336917
Offset: 1

Views

Author

Hugo Pfoertner, Aug 26 2021

Keywords

Comments

The sequence gives the positions, expressed by A001359(m), where the number of twin prime pairs m seen so far first exceeds the number predicted by the first Hardy-Littlewood conjecture after having been less than the predicted number before. A347279 gives the transitions in the opposite direction.
The total number of twin prime pairs up to that with first member x in the intervals a(k) <= x < A347279(k) is above the Hardy-Littlewood prediction. The total number of twin prime pairs up to that with first member x in the intervals A347279(k) <= x < a(k+1) is below the H-L prediction.

Crossrefs

a(1) = A210439(2) (Skewes number for twin primes).

Programs

  • PARI
    halicon(h) = {my(w=Set(vecsort(h)), n=#w, wmin=vecmin(w), distres(v,p)=#Set(v%p)); for(k=1,n, w[k]=w[k]-wmin); my(plim=nextprime(vecmax(w))); prodeuler(p=2, plim, (1-distres(w,p)/p)/(1-1/p)^n) * prodeulerrat((1-n/p)/(1-1/p)^n, 1, nextprime(plim+1))}; \\ k-tuple constant
    Li(x, n)=intnum(t=2, n, 1/log(t)^x); \\ logarithmic integral
    a347278(nterms,CHL)={my(n=1,pprev=1,np=0); forprime(p=5,, if(p%6!=1&&ispseudoprime(p+2), n++; L=Li(2,p); my(x=n/L-CHL); if(x*pprev>0, if(pprev>0,print1(p,", ");np++; if(np>nterms,return)); pprev=-pprev)))};
    a347278(10,halicon([0,2])) \\ computing 30 terms takes about 5 minutes