A347311 a(n) is the smallest prime q such that Sum_{primes p <= q} log(p)/p >= n.
5, 19, 67, 191, 541, 1487, 4079, 11173, 30559, 83137, 226427, 615919, 1675771, 4556771, 12387481, 33677717, 91558231, 248887319, 676566619, 1839125531, 4999337929, 13589640521, 36940536917, 100415101481, 272957090657, 741974865617, 2016896970001
Offset: 1
Examples
a(1) = 5 because log(2)/2 + log(3)/3 + log(5)/5 = 1.034665268989... is the first time the sum is >= 1.
References
- Gérald Tenenbaum, Introduction to analytic and probabilistic number theory, 3rd ed., American Mathematical Society, 2015. See page 16.
Links
- Wikipedia, Mertens's Theorems.
Programs
-
Mathematica
Table[i=1;d=Log@Prime@i/Prime@i;While[d
Giorgos Kalogeropoulos, Sep 08 2021 *) -
PARI
a(n) = my(k=0, s=0, p=2); while (s < n, s += log(p)/p; k++; p = nextprime(p+1)); prime(k); \\ Michel Marcus, Sep 06 2021
Formula
a(n) = prime(A347310(n)). - Michel Marcus, Sep 06 2021
Extensions
a(8)-a(16) from Michel Marcus, Sep 06 2021
a(17)-a(23) from Jon E. Schoenfield, Sep 06 2021
a(24)-a(27) from Amiram Eldar, Sep 10 2024
Comments