A347315 a(n) = sum of row beginning with n when inventory sequence A342585 is written as an irregular triangle.
0, 2, 6, 11, 17, 24, 32, 40, 51, 63, 76, 89, 102, 116, 132, 149, 169, 188, 208, 228, 249, 272, 297, 322, 349, 377, 404, 432, 461, 494, 528, 562, 597, 632, 667, 703, 740, 778, 820, 862, 903, 945, 991, 1038, 1085, 1132, 1181, 1229, 1277, 1328, 1380, 1434, 1487
Offset: 0
Keywords
Examples
As an irregular triangle A342585 begins: 0; 1, 1, 0; 2, 2, 2, 0; 3, 2, 4, 1, 1, 0; 4, 4, 4, 1, 4, 0; ... and the row sums are 0, 2, 6, 11, 17, ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A342585.
Programs
-
Mathematica
Join[{0}, Total /@ SplitBy[Block[{c, k, m, nn = 52}, c[0] = 1; Reap[Do[k = 0; While[IntegerQ[c[k]], Set[m, c[k]]; Sow[m]; If[IntegerQ@ c[m], c[m]++, c[m] = 1]; k++]; Sow[0]; c[0]++, nn]][[-1, -1]]], # == 0 &][[1 ;; -1 ;; 2]]] (* Michael De Vlieger, Oct 12 2021 *)
-
PARI
A347315_vec(N, c=[], i, s)=vector(N, j, until(c[1+c[i]]++&&!c[i]||j==1, while(#c<=i||#c<=c[i+1], c=concat(c, 0)); s+=c[i+=1]); s+s=i=0) \\ M. F. Hasler, Nov 14 2021
-
Python
from collections import Counter def aupton(nn): num, inventory, rowsum, alst = 0, Counter([0]), 0, [0] while len(alst) <= nn: c = inventory[num] num += 1 rowsum += c inventory.update([c]) if c == 0: alst.append(rowsum) num = rowsum = 0 return alst print(aupton(52)) # Michael S. Branicky, Nov 14 2021
Extensions
More terms from Alois P. Heinz, Sep 09 2021
Comments