A347335 Lexicographically earliest sequence of distinct nonnegative integers such that the sum of three consecutive terms is a palindrome in base 10.
0, 1, 2, 3, 4, 15, 14, 26, 37, 25, 39, 13, 36, 6, 24, 47, 17, 35, 49, 27, 12, 5, 16, 23, 38, 40, 10, 51, 50, 20, 7, 28, 9, 18, 61, 22, 48, 29, 11, 59, 31, 21, 69, 41, 71, 19, 81, 91, 30, 60, 101, 111, 70, 122, 80, 90, 32, 100, 110, 42, 120, 130, 53, 8, 141, 63, 58, 121, 33, 68, 131, 43
Offset: 1
Examples
a(1) + a(2) + a(3) = 0 + 1 + 2 = 3 (palindrome); a(2) + a(3) + a(4) = 1 + 2 + 3 = 6 (palindrome); a(3) + a(4) + a(5) = 2 + 3 + 4 = 9 (palindrome); a(4) + a(5) + a(6) = 3 + 4 + 15 = 22 (palindrome); etc.
Crossrefs
Cf. A228730.
Programs
-
Python
def ispal(n): s = str(n); return s == s[::-1] def aupton(terms): alst, seen = [0, 1], {0, 1} for n in range(2, terms): an, partial_sum = 1, sum(alst[-2:]) while an in seen or not ispal(partial_sum + an): an += 1 alst.append(an); seen.add(an) return alst print(aupton(201)) # Michael S. Branicky, Aug 28 2021