A347360 Numbers that can be represented as the sum of squares of 3 numbers and also equal to twice the sum of their joint products.
18, 72, 98, 162, 288, 338, 392, 450, 648, 722, 882, 1152, 1352, 1458, 1568, 1800, 1922, 2178, 2450, 2592, 2738, 2888, 3042, 3528, 3698, 4050, 4608, 4802, 5202, 5408, 5832, 6272, 6498, 7200, 7442, 7688, 7938, 8450, 8712, 8978, 9522, 9800, 10368, 10658, 10952, 11250, 11552, 11858
Offset: 1
Keywords
Examples
For example, the third term (1,4,9) is 1^2+4^2+9^2 = 2*(1*4+1*9+4*9) = 98. The sequence is given by a(n) (x, y, z) 18 (1,1,4) 72 (2,2,8) 98 (1,4,9) 162 (3,3,12) 288 (4,4,16) 338 (1,9,16) 392 (2,8,18) 450 (5,5,20) 648 (6,6,24) 722 (4,9,25) 882 (1,16,25) (3,12,27) (7,7,28) 1152 (8,8,32) (2,18,32) 1352 (2,18,32) 1458 (9,9,36) 1568 (4,16,36) 1800 (10,10,40) 1922 (1,25,36) 2178 (11,11,44) 2450 (5,20,45) 2592 (12,12,48) 2738 (9,16,49) 2888 (8,18,50) 3042 (3,27,48) (4,25,49) (13,13,52) 3528 (2,32,50) (6,24,54)
References
- E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985.
Crossrefs
Programs
-
Mathematica
q[n_] := (s = Select[PowersRepresentations[n,3,2], AllTrue[#, #1 > 0 &]&]) != {} && MemberQ[(#[[1]]*#[[2]] + #[[2]]*#[[3]] + #[[3]]*#[[1]])& /@ s, n/2]; Select[Range[2, 12000, 2], q] (* Amiram Eldar, Oct 03 2021 *)
Formula
Empirically, such numbers appear to be a(n) = 2*b_n^2 where b_n are numbers whose product of prime indices is even (A324929).The triplet (x,y,x) is always (n*k^2, n*m^2, n*p^2).
Comments