A347366 Primes that are partial sums of the semiprimes.
19, 29, 43, 79, 101, 331, 647, 709, 2039, 4723, 5261, 5827, 10271, 11057, 12163, 12743, 20183, 22039, 22807, 25999, 30319, 33563, 44777, 45319, 56843, 60623, 61927, 73583, 83077, 108013, 133447, 142183, 159541, 182659, 191833, 204803, 214463, 215689, 248789, 266239, 292573, 302593, 314339, 318823
Offset: 1
Keywords
Examples
a(3) = 43 is a term because 43 = A062198(5) is prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
SP:= select(t -> numtheory:-bigomega(t) = 2, [$2..10000]): PSSP:= ListTools:-PartialSums(SP): select(isprime,PSSP);
-
Mathematica
Select[Accumulate @ Select[Range[1500], PrimeOmega[#] == 2 &], PrimeQ] (* Amiram Eldar, Aug 29 2021 *)
-
Python
from sympy import factorint, isprime def aupto(limit): alst, k, s = [], 1, 0 for k in range(1, limit+1): if sum(factorint(k).values()) == 2: s += k if s > limit: break if isprime(s): alst.append(s) return alst print(aupto(320000)) # Michael S. Branicky, Aug 29 2021