cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A347249 a(n) = A331410(n) - A336361(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, -1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 1, -1, 1, -1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, -1, -1, 1, 1, -1, -1, 0, 0, 3, 0, 1, 1, 0, 0, -1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 0, 2, 0, -2, -2, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2021

Keywords

Comments

Terms 0 .. 9 occur for the first time at n = 1, 15, 25, 75, 275, 725, 2175, 3725, 9025, 27075.

Crossrefs

Cf. A000265, A331410, A336361, A347250 (positions of negative terms).
Cf. also A347374.

Programs

Formula

a(n) = A331410(n) - A336361(n).
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A351037 Lexicographically earliest infinite sequence such that a(i) = a(j) => A000593(i) = A000593(j), for all i, j >= 1, where A000593 is the sum of odd divisors function.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 8, 2, 12, 7, 13, 4, 14, 8, 11, 1, 15, 9, 15, 5, 16, 10, 17, 3, 18, 11, 19, 6, 20, 8, 15, 2, 21, 12, 22, 7, 23, 13, 22, 4, 24, 14, 25, 8, 26, 11, 27, 1, 28, 15, 29, 9, 30, 15, 22, 5, 31, 16, 32, 10, 30, 17, 24, 3, 33, 18, 28, 11, 34, 19, 35, 6, 36
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2022

Keywords

Comments

Restricted growth sequence transform of A000593.
Question: To which set of n does the horizontal stripe at around a(n) = ~8000 correspond in the scatter plot of this sequence?

Examples

			a(21) = a(31) = 11 because A000593(21) = A000593(31) = 32, and 32 is the 11th distinct value obtained by A000593.
		

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v351037 = rgs_transform(vector(up_to, n, sigma(n>>valuation(n,2))));
    A351037(n) = v351037[n];

A351040 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336158(i) = A336158(j), A206787(i) = A206787(j) and A336651(i) = A336651(j) for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 17, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 25, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 17, 34, 5, 35, 18, 36, 10, 33, 19, 37, 3, 38, 20, 39, 11, 40, 21, 41, 6, 42
Offset: 1

Views

Author

Antti Karttunen, Jan 31 2022

Keywords

Comments

Restricted growth sequence transform of the ordered triplet [A336158(n), A206787(n), A336651(n)].
For all i, j >= 1:
A003602(i) = A003602(j) => a(i) = a(j),
a(i) = a(j) => A336390(i) = A336390(j) => A336391(i) = A336391(j),
a(i) = a(j) => A347374(i) = A347374(j),
a(i) = a(j) => A351036(i) = A351036(j) => A113415(i) = A113415(j),
a(i) = a(j) => A351461(i) = A351461(j).
From Antti Karttunen, Nov 23 2023: (Start)
Conjectured to be equal to the lexicographically earliest infinite sequence such that b(i) = b(j) => A000593(i) = A000593(j), A336158(i) = A336158(j) and A336467(i) = A336467(j), for all i, j >= 1 (this was the original definition). In any case it holds that a(i) = a(j) => b(i) = b(j) for all i, j >= 1. See comment in A351461.
(End)

Crossrefs

Differs from A347374 for the first time at n=103, where a(103) = 48, while A347374(103) = 30.
Differs from A351035 for the first time at n=175, where a(175) = 80, while A351035(175) = 78.
Differs from A351036 for the first time at n=637, where a(637) = 272, while A351036(637) = 261.

Programs

  • PARI
    up_to = 65539;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };
    A336158(n) = A046523(A000265(n));
    A206787(n) = sumdiv(n, d, d*(d % 2)*issquarefree(d));
    A336651(n) = { my(f=factor(n)); prod(i=1, #f~, if(2==f[i,1],1,f[i,1]^(f[i,2]-1))); };
    Aux351040(n) = [A336158(n), A206787(n), A336651(n)];
    v351040 = rgs_transform(vector(up_to, n, Aux351040(n)));
    A351040(n) = v351040[n];

Extensions

Original definition moved to the comment section and replaced with a definition that is at least as encompassing, and conjectured to be equal to the original one. - Antti Karttunen, Nov 23 2023

A351035 Lexicographically earliest infinite sequence such that a(i) = a(j) => A347385(i) = A347385(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 17, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 25, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 17, 34, 5, 35, 18, 36, 10, 33, 19, 37, 3, 38, 20, 39, 11, 40, 21, 41, 6, 42
Offset: 1

Views

Author

Antti Karttunen, Jan 30 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A347385(n), A336158(n)], where A347385(n) is the Dedekind psi function applied to the odd part of n, i.e., A001615(A000265(n)), and A336158(n) is the least representative of the prime signature of the odd part of n.
For all i, j >= 1: A003602(i) = A003602(j) => a(i) = a(j).

Examples

			a(33) = a(35) as both 33 = 3*11 and 35 = 5*7 are odd nonsquare semiprimes, thus A336158 gives equal values for them, and also A347385(33) = A001615(33) = A347385(35) = A001615(35) = 48.
		

Crossrefs

Differs from A347374 for the first time at n=103, where a(103) = 48, while A347374(103) = 30.
Differs from A351036 for the first time at n=175, where a(175) = 78, while A351036(175) = 80.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A347385(n) = if(1==n,n, my(f=factor(n>>valuation(n, 2))); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    Aux351035(n) = [A347385(n), A336158(n)];
    v351035 = rgs_transform(vector(up_to, n, Aux351035(n)));
    A351035(n) = v351035[n];

A351036 Lexicographically earliest infinite sequence such that a(i) = a(j) => A000593(i) = A000593(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 17, 5, 18, 10, 19, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 25, 4, 27, 15, 28, 8, 29, 16, 30, 1, 31, 17, 32, 9, 33, 17, 34, 5, 35, 18, 36, 10, 33, 19, 37, 3, 38, 20, 39, 11, 40, 21, 41, 6, 42
Offset: 1

Views

Author

Antti Karttunen, Jan 30 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A000593(n), A336158(n)], where A000593(n) is the sum of odd divisors of n, and A336158(n) is the least representative of the prime signature of the odd part of n.
For all i, j:
A003602(i) = A003602(j) => A351040(i) = A351040(j) => a(i) = a(j),
a(i) = a(j) => A113415(i) = A113415(j).

Crossrefs

Cf. also A351037.
Differs from A347374 for the first time at n=103, where a(103) = 48, while A347374(103) = 30.
Differs from A351035 for the first time at n=175, where a(175) = 80, while A351035(175) = 78.
Differs from A351040 for the first time at n=637, where a(637) = 261, while A351040(637) = 272.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A000593(n) = sigma(A000265(n));
    Aux351036(n) = [A000593(n), A336158(n)];
    v351036 = rgs_transform(vector(up_to, n, Aux351036(n)));
    A351036(n) = v351036[n];

A347375 The position of the first occurrence of n in A347249.

Original entry on oeis.org

1, 15, 25, 75, 275, 725, 2175, 3725, 9025, 27075, 79025, 215905, 390625, 1079525, 2256125, 5397625, 11328125, 33984375, 58203125, 174609375
Offset: 0

Views

Author

Antti Karttunen, Aug 31 2021

Keywords

Comments

These appear to also be the positions of records in A347249.
Question: Are all terms after the initial one multiples of five?

Crossrefs

Formula

For all n >= 0, A347249(a(n)) = n.
Showing 1-6 of 6 results.