cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347376 Möbius transform of A250469.

Original entry on oeis.org

1, 2, 4, 6, 6, 8, 10, 12, 20, 18, 12, 12, 16, 26, 24, 24, 18, 16, 22, 24, 40, 48, 28, 24, 42, 56, 40, 36, 30, 24, 36, 48, 68, 78, 60, 36, 40, 86, 74, 48, 42, 32, 46, 60, 60, 104, 52, 48, 110, 78, 102, 72, 58, 68, 72, 72, 118, 138, 60, 48, 66, 144, 80, 96, 96, 52, 70, 96, 142, 84, 72, 72, 78, 176, 108, 108, 120, 70
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2021

Keywords

Comments

Question: Are all terms positive?

Crossrefs

Programs

  • PARI
    up_to = 10000;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A250469(n) = if(1==n,n,my(spn = nextprime(1+A020639(n)), c = A078898(n), k = 0); while(c, k++; if((1==k)||(A020639(k)>=spn),c -= 1)); (k*spn));
    A347376(n) = sumdiv(n,d,moebius(n/d)*A250469(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A250469(d).
a(n) = A003972(n) - A347377(n).