cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347385 Dedekind psi function applied to the odd part of n: a(n) = A001615(A000265(n)).

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 12, 6, 12, 4, 14, 8, 24, 1, 18, 12, 20, 6, 32, 12, 24, 4, 30, 14, 36, 8, 30, 24, 32, 1, 48, 18, 48, 12, 38, 20, 56, 6, 42, 32, 44, 12, 72, 24, 48, 4, 56, 30, 72, 14, 54, 36, 72, 8, 80, 30, 60, 24, 62, 32, 96, 1, 84, 48, 68, 18, 96, 48, 72, 12, 74, 38, 120, 20, 96, 56, 80, 6, 108, 42, 84, 32, 108
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2021

Keywords

Comments

Coincides with A000593 on A122132.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p + 1)*p^(e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2021 *)
  • PARI
    A347385(n) = if(1==n,n, my(f=factor(n>>valuation(n, 2))); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));

Formula

Multiplicative with a(2^e) = 1, a(p^e) = (p+1)*p^(e-1) for all odd primes p.
a(n) = A001615(A000265(n)).
a(n) = A206787(n) * A336651(n). - Antti Karttunen, Feb 11 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = 4/Pi^2 = 0.405284... (A185199). - Amiram Eldar, Nov 19 2022
Dirichlet g.f.: (zeta(s)*zeta(s-1)/zeta(2*s))*(4^s-2^(s+1))/(4^s-1). - Amiram Eldar, Jan 04 2023

A347387 The exponent of the first power of 2 reached when starting iterating A347385 from n, where A347385 is Dedekind psi function applied to the odd part of n.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 4, 2, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 3, 2, 2, 5, 5, 2, 2, 2, 2, 2, 2, 3, 2, 5, 5, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 5, 5, 2, 6, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 5, 5, 5, 2, 2, 2, 2, 2, 2, 3, 2, 7, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 31 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 1, (p + 1)*p^(e - 1)]; psiOdd[1] = 1; psiOdd[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := IntegerExponent[NestWhile[psiOdd, n, # != 2^IntegerExponent[#, 2] &], 2]; Array[a, 100] (* Amiram Eldar, Aug 31 2021 *)
  • PARI
    A347385(n) = if(1==n,n, my(f=factor(n>>valuation(n, 2))); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A347387(n) = if(!bitand(n, n-1), valuation(n, 2), A347387(A347385(n)));

Formula

a(2^k) = k, and for numbers with A209229(n) = 0, a(n) = a(A001615(A000265(n))).
Showing 1-2 of 2 results.