A347395 Dirichlet convolution of Liouville's lambda (A008836) with A342001, where A342001(n) = A003415(n)/A003557(n).
0, 1, 1, 1, 1, 3, 1, 2, 1, 5, 1, 3, 1, 7, 6, 2, 1, 2, 1, 5, 8, 11, 1, 5, 1, 13, 2, 7, 1, 14, 1, 3, 12, 17, 10, 2, 1, 19, 14, 9, 1, 20, 1, 11, 5, 23, 1, 5, 1, 2, 18, 13, 1, 4, 14, 13, 20, 29, 1, 14, 1, 31, 7, 3, 16, 32, 1, 17, 24, 34, 1, 3, 1, 37, 3, 19, 16, 38, 1, 9, 2, 41, 1, 20, 20, 43, 30, 21, 1, 9, 18, 23, 32
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
Formula
Sum_{k=1..n} a(k) ~ c * A065464 * Pi^4 * n^2 / 180, where c = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2))*PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384... - Vaclav Kotesovec, Mar 04 2023
Comments