cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347421 Numbers k such that the product of the first k semiprimes is divisible by the sum of the first k semiprimes.

Original entry on oeis.org

1, 9, 19, 29, 30, 31, 32, 33, 35, 36, 40, 44, 45, 46, 47, 51, 55, 57, 64, 67, 70, 71, 72, 74, 81, 83, 84, 92, 94, 95, 96, 97, 103, 104, 105, 107, 108, 109, 113, 116, 118, 124, 125, 127, 130, 131, 132, 133, 136, 138, 140, 142, 144, 158, 159, 160, 167, 177, 182, 184, 188, 191, 196, 202, 203, 206
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 31 2021

Keywords

Comments

What are the asymptotics of a(n)/n as n -> infinity?

Examples

			a(2) = 9 is a term because the first 9 semiprimes are 4, 6, 9, 10, 14, 15, 21, 22, 25, and 4*6*9*10*14*15*21*22*25 = 5239080000 is divisible by 4+6+9+10+14+15+21+22+25 = 126.
		

Crossrefs

Programs

  • Julia
    using Nemo
    function A347421List(upto)
        c, s, p = 0, ZZ(0), ZZ(1)
        list = Int32[]
        for n in 4:typemax(Int32)
            if 2 == sum([e for (p, e) in factor(n)])
                s += n; p *= n; c += 1
                if divisible(p, s)
                    c > upto && return list
                    push!(list, c)
                end
            end
        end
    end
    A347421List(206) |> println # Peter Luschny, Aug 31 2021
  • Maple
    R:= NULL:
    s:= 0: p:= 1: zcount:= 0: scount:= 0:
    for n from 4 while zcount < 100 do
      if numtheory:-bigomega(n) = 2 then
        s:= s+n; p:= p*n;
        scount:= scount+1;
        if p mod s = 0 then zcount:= zcount+1; R:= R, scount fi
      fi
    od:
    R;
  • Mathematica
    sp = Select[Range[700], PrimeOmega[#] == 2 &]; Position[Divisible[Rest @ FoldList[Times, 1, sp], Accumulate @ sp], True] // Flatten (* Amiram Eldar, Aug 31 2021 *)
  • Python
    from sympy import factorint
    def aupto(limit):
        alst, i, k, s, p = [], 1, 0, 0, 1
        while k < limit:
            if sum(factorint(i).values()) == 2:
                k += 1; s += i; p *= i
                if p%s == 0: alst.append(k)
            i += 1
        return alst
    print(aupto(206)) # Michael S. Branicky, Aug 31 2021