A347439 Number of factorizations of n with integer reciprocal alternating product.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 6, 0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 4, 0, 0, 0, 1, 0, 0, 0, 5
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 16, 36, 64, 72, 128, 144: a(n) = 3, 4, 6, 5, 7, 11 -------------------------------------------------------------------------------- 2*8 6*6 8*8 2*36 2*64 2*72 4*4 2*18 2*32 3*24 4*32 3*48 2*2*2*2 3*12 4*16 6*12 8*16 4*36 2*2*3*3 2*2*2*8 2*2*3*6 2*2*4*8 6*24 2*2*4*4 2*3*3*4 2*4*4*4 12*12 2*2*2*2*2*2 2*2*2*16 2*2*6*6 2*2*2*2*2*4 2*3*3*8 3*3*4*4 2*2*2*18 2*2*3*12 2*2*2*2*3*3 From _Antti Karttunen_, Jul 28 2024 (Start) For n=400, there are 12 such factorizations: 2*200 4*100 5*80 10*40 20*20 2*2*2*50 2*2*5*20 2*2*10*10 2*4*5*10 2*5*5*8 4*4*5*5 2*2*2*2*5*5. Note that 400 = 2^4 * 5^2 has the same prime signature as 144 = 2^4 * 3^2. 400 = 2*4*5*10 is the factorization for which there is no analogous factorization of 144, as 2*3*4*6 doesn't satisfy the condition of having an integer reciprocal alternating product. (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Positions of 0's are A005117 \ {1}.
Positions of non-0's are 1 and A013929.
Positions of 1's are 1 and A082293.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reciprocal version is A347437.
The reverse version is A347438.
Allowing any alternating product < 1 gives A347440.
The non-reciprocal reverse version is A347442.
Allowing any alternating product >= 1 gives A347456.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347441 counts odd-length factorizations with integer alternating product.
A347460 counts possible alternating products of factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}]; Table[Length[Select[facs[n],IntegerQ[recaltprod[#]]&]],{n,100}]
-
PARI
A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
-
PARI
A347439(n, m=0, ap=1, e=1) = if(1==n, 1==denominator(ap), sumdiv(n, d, if(d>1 && d>=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
Extensions
Data section extended up to a(108) by Antti Karttunen, Jul 28 2024
Comments