A347441 Number of odd-length factorizations of n with integer alternating product.
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 5, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 6, 1, 2, 2, 4, 1, 1, 1, 2, 1, 1, 1, 7
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 2, 8, 32, 48, 54, 72, 108: 2 8 32 48 54 72 108 2*2*2 2*2*8 2*4*6 2*3*9 2*6*6 2*6*9 2*4*4 3*4*4 3*3*6 3*3*8 3*6*6 2*2*2*2*2 2*2*12 2*2*18 2*2*27 2*2*2*2*3 2*3*12 2*3*18 2*2*2*3*3 3*3*12 2*2*3*3*3
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
The restriction to powers of 2 is A027193.
Allowing any alternating product gives A339890.
Allowing even-length factorizations gives A347437.
The even-length instead of odd-length version is A347438.
A038548 counts possible reverse-alternating products of factorizations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A339846 counts even-length factorizations.
A347439 counts factorizations with integer reciprocal alternating product.
A347440 counts factorizations with alternating product < 1.
A347442 counts factorizations with integer reverse-alternating product.
A347456 counts factorizations with alternating product >= 1.
A347463 counts ordered factorizations with integer alternating product.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[facs[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
-
PARI
A347441(n, m=n, ap=1, e=0) = if(1==n, (e%2)&&1==denominator(ap), sumdiv(n, d, if((d>1)&&(d<=m), A347441(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023
Formula
a(2^n) = A027193(n).
Extensions
Data section extended up to a(108) by Antti Karttunen, Oct 22 2023
Comments