A347442 Number of factorizations of n with integer reverse-alternating product.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 8, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 8, 2, 3, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 8, 5, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 9, 1, 3, 3, 8, 1, 1, 1, 3, 1, 1, 1, 12
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 4, 8, 16, 32, 36, 54, 64: (4) (8) (16) (32) (36) (54) (64) (2*2) (2*4) (2*8) (4*8) (6*6) (3*18) (8*8) (2*2*2) (4*4) (2*16) (2*18) (2*3*9) (2*32) (2*2*4) (2*2*8) (3*12) (3*3*6) (4*16) (2*2*2*2) (2*4*4) (2*2*9) (2*4*8) (2*2*2*4) (2*3*6) (4*4*4) (2*2*2*2*2) (3*3*4) (2*2*16) (2*2*3*3) (2*2*2*8) (2*2*4*4) (2*2*2*2*4) (2*2*2*2*2*2)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Positions of 2's are A001248.
Positions of 1's are A005117.
Positions of non-1's are A013929.
Allowing any alternating product <= 1 gives A339846.
Allowing any alternating product > 1 gives A339890.
The non-reverse version is A347437.
The reciprocal version is A347438.
The even-length case is A347439.
Allowing any alternating product < 1 gives A347440.
Allowing any alternating product >= 1 gives A347456.
The ordered version is A347463.
A038548 counts possible reverse-alternating products of factorizations.
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A273013 counts ordered factorizations of n^2 with alternating product 1.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[facs[n],IntegerQ@*revaltprod]],{n,100}]
-
PARI
A347442(n, m=n, ap=1, e=0) = if(1==n, 1==denominator(ap), sumdiv(n, d, if((d>1)&&(d<=m), A347442(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Oct 22 2023
Formula
a(2^n) = A000041(n).
Extensions
Data section extended up to a(108) by Antti Karttunen, Oct 22 2023
Comments