A347443 Number of integer partitions of n with reverse-alternating product <= 1.
1, 1, 1, 2, 3, 5, 6, 10, 12, 19, 22, 34, 40, 60, 69, 101, 118, 168, 195, 272, 317, 434, 505, 679, 793, 1050, 1224, 1599, 1867, 2409, 2811, 3587, 4186, 5290, 6168, 7724, 9005, 11186, 13026, 16062, 18692, 22894, 26613, 32394, 37619, 45535, 52815, 63593, 73680
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 12 partitions: (1) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (1111) (221) (51) (61) (62) (2111) (2211) (331) (71) (11111) (3111) (2221) (2222) (111111) (3211) (3221) (4111) (3311) (22111) (4211) (211111) (5111) (1111111) (221111) (311111) (11111111)
Crossrefs
The odd-length case is A035363 (shifted).
The strict case is A067661.
The even bisection is A236913.
The opposite version (>= instead of <=) is A344607.
The case of < 1 instead of <= 1 is A344608.
Allowing any integer reverse-alternating product gives A347445.
The complement (> 1 instead of <= 1) is counted by A347449.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A100824 counts partitions with alternating sum <= 1.
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.
Programs
-
Mathematica
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[IntegerPartitions[n],altprod[Reverse[#]]<=1&]],{n,0,30}]
Comments