A347444 Number of odd-length integer partitions of n with integer alternating product.
0, 1, 1, 2, 2, 4, 4, 8, 7, 14, 13, 24, 21, 40, 35, 62, 55, 99, 85, 151, 128, 224, 195, 331, 283, 481, 416, 690, 593, 980, 844, 1379, 1189, 1918, 1665, 2643, 2292, 3630, 3161, 4920, 4299, 6659, 5833, 8931, 7851, 11905, 10526, 15805, 13987, 20872, 18560, 27398
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 14 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (111) (211) (221) (222) (322) (332) (333) (311) (411) (331) (422) (441) (11111) (21111) (421) (611) (522) (511) (22211) (621) (22111) (41111) (711) (31111) (2111111) (22221) (1111111) (32211) (33111) (42111) (51111) (2211111) (3111111) (111111111)
Crossrefs
The reciprocal version is A035363.
Allowing any alternating product gives A027193.
The multiplicative version (factorizations) is A347441.
Allowing any length and alternating product > 1 gives A347448.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347453.
The even-length instead of odd-length version is A347704.
A000041 counts partitions.
A025047 counts wiggly compositions.
A026424 lists numbers with odd bigomega.
A339890 counts odd-length factorizations.
A347437 counts factorizations with integer alternating product.
A347461 counts possible alternating products of partitions.
Programs
-
Mathematica
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]
Comments