A347445 Number of integer partitions of n with integer reverse-alternating product.
1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 24, 32, 40, 50, 62, 77, 99, 115, 151, 170, 224, 251, 331, 360, 481, 517, 690, 728, 980, 1020, 1379, 1420, 1918, 1962, 2643, 2677, 3630, 3651, 4920, 4926, 6659, 6625, 8931, 8853, 11905, 11781, 15805, 15562, 20872, 20518
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 12 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (221) (33) (322) (44) (211) (311) (222) (331) (332) (1111) (11111) (411) (421) (422) (2211) (511) (611) (21111) (22111) (2222) (111111) (31111) (3311) (1111111) (22211) (41111) (221111) (2111111) (11111111)
Crossrefs
Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any reverse-alternating product < 1 gives A344608.
Allowing any reverse-alternating product <= 1 gives A347443.
Allowing any reverse-alternating product > 1 gives A347449.
Ranked by A347454.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A347462 counts possible reverse-alternating products of partitions.
Programs
-
Mathematica
revaltprod[q_]:=Product[Reverse[q][[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[IntegerPartitions[n],IntegerQ[revaltprod[#]]&]],{n,0,30}]
Comments