A347450 Numbers whose multiset of prime indices has alternating product <= 1.
1, 2, 4, 6, 8, 9, 10, 14, 15, 16, 18, 21, 22, 24, 25, 26, 32, 33, 34, 35, 36, 38, 39, 40, 46, 49, 50, 51, 54, 55, 56, 57, 58, 60, 62, 64, 65, 69, 72, 74, 77, 81, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 100, 104, 106, 111, 115, 118, 119, 121, 122
Offset: 1
Keywords
Examples
The initial terms and their prime indices: 1: {} 26: {1,6} 56: {1,1,1,4} 2: {1} 32: {1,1,1,1,1} 57: {2,8} 4: {1,1} 33: {2,5} 58: {1,10} 6: {1,2} 34: {1,7} 60: {1,1,2,3} 8: {1,1,1} 35: {3,4} 62: {1,11} 9: {2,2} 36: {1,1,2,2} 64: {1,1,1,1,1,1} 10: {1,3} 38: {1,8} 65: {3,6} 14: {1,4} 39: {2,6} 69: {2,9} 15: {2,3} 40: {1,1,1,3} 72: {1,1,1,2,2} 16: {1,1,1,1} 46: {1,9} 74: {1,12} 18: {1,2,2} 49: {4,4} 77: {4,5} 21: {2,4} 50: {1,3,3} 81: {2,2,2,2} 22: {1,5} 51: {2,7} 82: {1,13} 24: {1,1,1,2} 54: {1,2,2,2} 84: {1,1,2,4} 25: {3,3} 55: {3,5} 85: {3,7}
Crossrefs
The additive version (alternating sum <= 0) is A028260.
Allowing any alternating product < 1 gives A119899.
Partitions of this type are counted by A347443.
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A344606 counts alternating permutations of prime indices.
A347457 lists Heinz numbers of partitions with integer alternating product.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Select[Range[100],altprod[primeMS[#]]<=1&]
Comments