A347453 Heinz numbers of odd-length integer partitions with integer alternating (or reverse-alternating) product.
2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 42, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 108, 109, 112, 113, 114, 116, 117, 124, 125, 127, 128, 130
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 2: {1} 29: {10} 61: {18} 3: {2} 31: {11} 63: {2,2,4} 5: {3} 32: {1,1,1,1,1} 67: {19} 7: {4} 37: {12} 68: {1,1,7} 8: {1,1,1} 41: {13} 71: {20} 11: {5} 42: {1,2,4} 72: {1,1,1,2,2} 12: {1,1,2} 43: {14} 73: {21} 13: {6} 44: {1,1,5} 75: {2,3,3} 17: {7} 45: {2,2,3} 76: {1,1,8} 18: {1,2,2} 47: {15} 78: {1,2,6} 19: {8} 48: {1,1,1,1,2} 79: {22} 20: {1,1,3} 50: {1,3,3} 80: {1,1,1,1,3} 23: {9} 52: {1,1,6} 83: {23} 27: {2,2,2} 53: {16} 89: {24} 28: {1,1,4} 59: {17} 92: {1,1,9}
Crossrefs
The reciprocal version is A000290.
Allowing any alternating product <= 1 gives A001105.
Allowing any alternating product gives A026424.
Factorizations of this type are counted by A347441.
These partitions are counted by A347444.
Allowing any length gives A347454.
Allowing any alternating product > 1 gives A347465.
A027193 counts odd-length partitions.
A344606 counts alternating permutations of prime indices.
A347446 counts partitions with integer alternating product.
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Select[Range[100],OddQ[PrimeOmega[#]]&&IntegerQ[altprod[primeMS[#]]]&]
Comments