A347454 Numbers whose multiset of prime indices has integer alternating product.
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 36, 37, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 78, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 108, 109, 112, 113
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 1: {} 20: {1,1,3} 47: {15} 2: {1} 23: {9} 48: {1,1,1,1,2} 3: {2} 25: {3,3} 49: {4,4} 4: {1,1} 27: {2,2,2} 50: {1,3,3} 5: {3} 28: {1,1,4} 52: {1,1,6} 7: {4} 29: {10} 53: {16} 8: {1,1,1} 31: {11} 59: {17} 9: {2,2} 32: {1,1,1,1,1} 61: {18} 11: {5} 36: {1,1,2,2} 63: {2,2,4} 12: {1,1,2} 37: {12} 64: {1,1,1,1,1,1} 13: {6} 41: {13} 67: {19} 16: {1,1,1,1} 42: {1,2,4} 68: {1,1,7} 17: {7} 43: {14} 71: {20} 18: {1,2,2} 44: {1,1,5} 72: {1,1,1,2,2} 19: {8} 45: {2,2,3} 73: {21}
Crossrefs
The even-length case is A000290.
The additive version is A026424.
Factorizations of this type are counted by A347437.
Allowing any alternating product <= 1 gives A347450.
The reciprocal version is A347451.
The odd-length case is A347453.
A344606 counts alternating permutations of prime indices.
A347461 counts possible alternating products of partitions.
A347462 counts possible reverse-alternating products of partitions.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Select[Range[100],IntegerQ[altprod[primeMS[#]]]&]
Comments