cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347456 Number of factorizations of n with alternating product >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 6, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 8, 1, 2, 1, 2, 1, 2, 1, 8, 1, 1, 2, 2, 1, 2, 1, 6, 4, 1, 1, 5, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
Also the number of factorizations of n with alternating sum >= 0.

Examples

			The a(n) factorizations for n = 4, 16, 24, 36, 60, 64, 96:
  4     16        24      36        60       64            96
  2*2   4*4       2*2*6   6*6       2*5*6    8*8           2*6*8
        2*2*4     2*3*4   2*2*9     3*4*5    2*4*8         3*4*8
        2*2*2*2           2*3*6     2*2*15   4*4*4         4*4*6
                          3*3*4     2*3*10   2*2*16        2*2*24
                          2*2*3*3            2*2*4*4       2*3*16
                                             2*2*2*2*4     2*4*12
                                             2*2*2*2*2*2   2*2*2*2*6
                                                           2*2*2*3*4
		

Crossrefs

The case of partitions is A000041, reverse A344607.
The reverse version is A001055, strict A347705.
Positions of 3's appear to be A065036.
Positions of 1's are 1 and A167171.
The opposite version (<= instead of >=) is A339846.
The strict version (> instead of >=) is A339890, also the odd-length case.
Allowing any integer alternating product gives A347437.
The case of alternating product 1 is A347438, also the even-length case.
Allowing any integer reciprocal alternating product gives A347439.
The complement (< instead of >=) is A347440.
Allowing any integer reverse-alternating product gives A347442.
A038548 counts factorizations with a wiggly permutation.
A045778 counts strict factorizations.
A074206 counts ordered factorizations.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1.
A347447 counts strict factorizations with alternating product > 1.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],altprod[#]>=1&]],{n,100}]

Formula

a(n) = A347438(n) + A347440(n).