A347456 Number of factorizations of n with alternating product >= 1.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 6, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 8, 1, 2, 1, 2, 1, 2, 1, 8, 1, 1, 2, 2, 1, 2, 1, 6, 4, 1, 1, 5, 1, 1, 1
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 4, 16, 24, 36, 60, 64, 96: 4 16 24 36 60 64 96 2*2 4*4 2*2*6 6*6 2*5*6 8*8 2*6*8 2*2*4 2*3*4 2*2*9 3*4*5 2*4*8 3*4*8 2*2*2*2 2*3*6 2*2*15 4*4*4 4*4*6 3*3*4 2*3*10 2*2*16 2*2*24 2*2*3*3 2*2*4*4 2*3*16 2*2*2*2*4 2*4*12 2*2*2*2*2*2 2*2*2*2*6 2*2*2*3*4
Crossrefs
Positions of 3's appear to be A065036.
Positions of 1's are 1 and A167171.
The opposite version (<= instead of >=) is A339846.
The strict version (> instead of >=) is A339890, also the odd-length case.
Allowing any integer alternating product gives A347437.
The case of alternating product 1 is A347438, also the even-length case.
Allowing any integer reciprocal alternating product gives A347439.
The complement (< instead of >=) is A347440.
Allowing any integer reverse-alternating product gives A347442.
A038548 counts factorizations with a wiggly permutation.
A045778 counts strict factorizations.
A074206 counts ordered factorizations.
A119620 counts partitions with alternating product 1.
A347447 counts strict factorizations with alternating product > 1.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[facs[n],altprod[#]>=1&]],{n,100}]
Comments