A347459 Number of factorizations of n^2 with integer reciprocal alternating product.
1, 1, 1, 3, 1, 4, 1, 6, 3, 4, 1, 11, 1, 4, 4, 12, 1, 11, 1, 12, 4, 4, 1, 28, 3, 4, 6, 12, 1, 19, 1, 22, 4, 4, 4, 38, 1, 4, 4, 29, 1, 21, 1, 12, 11, 4, 1, 65, 3, 11, 4, 12, 1, 29, 4, 29, 4, 4, 1, 71, 1, 4, 11, 40, 4, 22, 1, 12, 4, 18, 1, 107, 1, 4, 11, 12, 4, 22, 1, 66, 12, 4, 1, 76, 4, 4, 4, 30, 1, 71, 4, 12, 4, 4, 4, 141
Offset: 1
Keywords
Examples
The a(2) = 1 through a(10) = 4 factorizations: 2*2 3*3 2*8 5*5 6*6 7*7 8*8 9*9 2*50 4*4 2*18 2*32 3*27 5*20 2*2*2*2 3*12 4*16 3*3*3*3 10*10 2*2*3*3 2*2*2*8 2*2*5*5 2*2*4*4 2*2*2*2*2*2
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
The nonsquared nonreciprocal even-length version is A347438.
This is the restriction to perfect squares of A347439.
A001055 counts factorizations.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347457 ranks partitions with integer alternating product.
A347466 counts factorizations of n^2.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; recaltprod[q_]:=Product[q[[i]]^(-1)^i,{i,Length[q]}]; Table[Length[Select[facs[n^2],IntegerQ[recaltprod[#]]&]],{n,100}]
-
PARI
A347439(n, m=n, ap=1, e=0) = if(1==n, !(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1 && d<=m, A347439(n/d, d, ap * d^((-1)^e), 1-e)))); A347459(n) = A347439(n^2); \\ Antti Karttunen, Jul 28 2024
Extensions
Data section extended up to a(96) by Antti Karttunen, Jul 28 2024
Comments