A347460 Number of distinct possible alternating products of factorizations of n.
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 5, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1
Keywords
Examples
The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120: 1 4 8 12 24 30 36 48 60 120 1 2 3 6 10/3 9 12 15 30 1/2 3/4 8/3 5/6 4 16/3 20/3 40/3 1/3 2/3 3/10 1 3 15/4 15/2 3/8 2/15 4/9 3/4 12/5 24/5 1/6 1/4 1/3 3/5 10/3 1/9 3/16 5/12 5/6 1/12 4/15 8/15 3/20 3/10 1/15 5/24 2/15 3/40 1/30
Crossrefs
Positions of 1's are 1 and A000040.
Positions of 2's appear to be A001358.
Positions of 3's appear to be A030078.
Dominates A038548, the version for reverse-alternating product.
Counting only integers gives A046951.
The even-length case is A072670.
The odd-length case is A347708.
The length-3 case is A347709.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Union[altprod/@facs[n]]],{n,100}]
Comments