A347463 Number of ordered factorizations of n with integer alternating product.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 7, 1, 4, 1, 4, 1, 1, 1, 6, 2, 1, 3, 4, 1, 1, 1, 11, 1, 1, 1, 18, 1, 1, 1, 6, 1, 1, 1, 4, 4, 1, 1, 20, 2, 4, 1, 4, 1, 6, 1, 6, 1, 1, 1, 8, 1, 1, 4, 26, 1, 1, 1, 4, 1, 1, 1, 35, 1, 1, 4, 4, 1, 1, 1, 20, 7, 1, 1, 8, 1, 1, 1, 6, 1, 8, 1, 4, 1, 1, 1, 32, 1, 4, 4, 18
Offset: 1
Keywords
Examples
The ordered factorizations for n = 4, 8, 12, 16, 24, 32, 36: 4 8 12 16 24 32 36 2*2 4*2 6*2 4*4 12*2 8*4 6*6 2*2*2 2*2*3 8*2 2*2*6 16*2 12*3 3*2*2 2*2*4 3*2*4 2*2*8 18*2 2*4*2 4*2*3 2*4*4 2*2*9 4*2*2 6*2*2 4*2*4 2*3*6 2*2*2*2 4*4*2 2*6*3 8*2*2 3*2*6 2*2*4*2 3*3*4 4*2*2*2 3*6*2 2*2*2*2*2 4*3*3 6*2*3 6*3*2 9*2*2 2*2*3*3 2*3*3*2 3*2*2*3 3*3*2*2
Links
Crossrefs
Positions of 2's are A001248.
Positions of 1's are A005117.
The restriction to powers of 2 is A116406.
The even-length case is A347048
The odd-length case is A347049.
A046099 counts factorizations with no alternating permutations.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347438 counts factorizations with alternating product 1.
A347460 counts possible alternating products of factorizations.
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[Join@@Permutations/@facs[n],IntegerQ[altprod[#]]&]],{n,100}]
-
PARI
A347463(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if(d>1, A347463(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024
Extensions
Data section extended up to a(100) by Antti Karttunen, Jul 28 2024
Comments