cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347465 Numbers whose multiset of prime indices has alternating product > 1.

Original entry on oeis.org

3, 5, 7, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 30, 31, 37, 41, 42, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 120, 124, 125, 127
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
All terms have odd bigomega (A001222).
Also Heinz numbers integer partitions with reverse-alternating product > 1.

Examples

			The terms and their prime indices begin:
      3: {2}         37: {12}            68: {1,1,7}
      5: {3}         41: {13}            70: {1,3,4}
      7: {4}         42: {1,2,4}         71: {20}
     11: {5}         43: {14}            73: {21}
     12: {1,1,2}     44: {1,1,5}         75: {2,3,3}
     13: {6}         45: {2,2,3}         76: {1,1,8}
     17: {7}         47: {15}            78: {1,2,6}
     19: {8}         48: {1,1,1,1,2}     79: {22}
     20: {1,1,3}     52: {1,1,6}         80: {1,1,1,1,3}
     23: {9}         53: {16}            83: {23}
     27: {2,2,2}     59: {17}            89: {24}
     28: {1,1,4}     61: {18}            92: {1,1,9}
     29: {10}        63: {2,2,4}         97: {25}
     30: {1,2,3}     66: {1,2,5}         99: {2,2,5}
     31: {11}        67: {19}           101: {26}
		

Crossrefs

The squarefree case is A030059 without 2.
The reverse version is A028983, counted by A119620.
The opposite version (< 1 instead of > 1) is A119899.
Factorizations of this type are counted by A339890, reverse A347705.
The weak version (>= 1 instead of > 1) is A344609.
Partitions of this type are counted by A347449, reverse A347448.
The complement is A347450, counted by A339846 or A347443.
Allowing any integer reverse-alternating product gives A347454.
Allowing any integer alternating product gives A347457.
A335433 ranks inseparable partitions, complement A335448.
A347446 counts partitions with integer alternating product, reverse A347445.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Select[Range[100],altprod[primeMS[#]]>1&]