A347465 Numbers whose multiset of prime indices has alternating product > 1.
3, 5, 7, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 30, 31, 37, 41, 42, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 66, 67, 68, 70, 71, 73, 75, 76, 78, 79, 80, 83, 89, 92, 97, 99, 101, 102, 103, 105, 107, 108, 109, 110, 112, 113, 114, 116, 117, 120, 124, 125, 127
Offset: 1
Keywords
Examples
The terms and their prime indices begin: 3: {2} 37: {12} 68: {1,1,7} 5: {3} 41: {13} 70: {1,3,4} 7: {4} 42: {1,2,4} 71: {20} 11: {5} 43: {14} 73: {21} 12: {1,1,2} 44: {1,1,5} 75: {2,3,3} 13: {6} 45: {2,2,3} 76: {1,1,8} 17: {7} 47: {15} 78: {1,2,6} 19: {8} 48: {1,1,1,1,2} 79: {22} 20: {1,1,3} 52: {1,1,6} 80: {1,1,1,1,3} 23: {9} 53: {16} 83: {23} 27: {2,2,2} 59: {17} 89: {24} 28: {1,1,4} 61: {18} 92: {1,1,9} 29: {10} 63: {2,2,4} 97: {25} 30: {1,2,3} 66: {1,2,5} 99: {2,2,5} 31: {11} 67: {19} 101: {26}
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Select[Range[100],altprod[primeMS[#]]>1&]
Comments