cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347841 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_3)^n.

Original entry on oeis.org

1, 1, 5, 79, 3851, 567733, 251790113, 335313799327, 1340040415899803, 16067553466179577453, 577986341168068075687337, 62375143109859674070751394743, 20194282336027244435564571244298243, 19614041602745899032342581715038226919285
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 79 = 1 * 1 + 13 * 2 + 52 * 1, counting:
the unrefined chain 0 < (F_3)^3;
13 chains 0 < V < (F_3)^3, with dim(V) = 1; another
13 chains 0 < V < (F_3)^3, with dim(V) = 2; and
52 chains 0 < V_1 < V_2 < (F_3)^3.
		

Crossrefs

Column k=3 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(3^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347486(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 3^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A348114 Irregular triangle read by rows: T(n, k) is the number of chains of subspaces 0 < V_1 < ... < V_r = (F_3)^n, counted up to coordinate permutation, with dimension increments given by (any fixed permutation of) the parts of the k-th partition of n in Abramowitz-Stegun order.

Original entry on oeis.org

1, 1, 3, 1, 5, 15, 1, 8, 16, 49, 154, 1, 11, 39, 126, 288, 964, 3275, 1, 15, 87, 168, 291, 1412, 3600, 4957, 12865, 46400, 168862, 1, 19, 176, 644, 608, 6101, 14001, 38996, 22294, 146064, 418072, 549894, 1586761, 6045724, 23115063, 1, 24, 338, 2348, 4849, 1195, 24329
Offset: 1

Views

Author

Álvar Ibeas, Oct 01 2021

Keywords

Comments

A permutation on the list of dimension increments does not modify the number of subspace chains.
The length of the enumerated chains is r = len(L), where L is the parameter partition.

Examples

			For L = (1, 1, 1), there are 52 (= 13 * 4) = A347486(3, 3) subspace chains 0 < V_1 < V_2 < (F_3)^3.
The permutations of the three coordinates classify them into 15 = T(3, 3) orbits.
T(3, 2) = 5 refers to partition (2, 1) and counts subspace chains in (F_3)^2 with dimensions (0, 2, 3), i.e. 2-dimensional subspaces. It also counts chains with dimensions (0, 1, 3), i.e. 1-dimensional subspaces.
Triangle begins:
  k:  1  2  3   4   5   6    7
      ------------------------
n=1:  1
n=2:  1  3
n=3:  1  5 15
n=4:  1  8 16  49 154
n=5:  1 11 39 126 288 964 3275
		

Crossrefs

Formula

If the k-th partition of n in A-St is L = (a, n-a), then T(n, k) = A347970(n, a) = A347970(n, n-a).
Showing 1-2 of 2 results.