cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347495 Factorial base Niven numbers (A118363) with a record gap to the next factorial base Niven number.

Original entry on oeis.org

1, 2, 9, 12, 30, 40, 60, 192, 224, 318, 550, 640, 1136, 1989, 4875, 4980, 23355, 24272, 24378, 40131, 60192, 63872, 80472, 238680, 280140, 2027340, 2872620, 3622068, 13400475, 21293094, 25399080, 28584626, 111020840, 278690360, 355419734, 398884590, 834592590
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2021

Keywords

Comments

The corresponding gaps are 1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 20, 32, 34, 39, 52, 55, 60, 67, 82, 85, 90, 96, 154, 174, 210, 216, 222, 268, 297, 318, 336, 346, 430, 466, 517, 546, 604, ...

Examples

			The first 8 factorial base Niven numbers are 1, 2, 4, 6, 8, 9, 12 and 16. The gaps between them are 1, 2, 2, 2, 1, 3 and 4. The record gaps, 1, 2, 3 and 4, occur after the terms 1, 2, 9 and 12.
		

Crossrefs

Programs

  • Mathematica
    fivenQ[n_] := Module[{s = 0, i = 2, k = n}, While[k > 0, k = Floor[n/i!]; s = s + (i - 1)*k; i++]; Divisible[n, n - s]]; gapmax = 0; n1 = 1; s = {}; Do[If[fivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, 10^5}]; s (* after Jean-François Alcover at A034968 *)