A358036 Number of n-step self-avoiding walks on a 2D square lattice where the first visited lattice point is directly visible from the last visited lattice point, and were both the visited lattice points and the path between these points are considered when determining the visibility of points.
0, 8, 24, 48, 144, 336, 992, 2344, 6760, 16336, 46432, 113904, 320864, 793136, 2222824, 5524040, 15409704, 38493560, 106895408, 268253720, 742053704, 1869175480, 5154271008, 13022699248, 35816428904, 90722285632, 248960813992, 631978627880, 1730939615552
Offset: 1
Examples
a(1) = 0 as after one step in any of the four available directions the first and last point of the walk are directly connected by a line forming the path, so are not considered mutually visible. a(2) = 8 as there are 4*3 = 12 2-step SAWs, but the four walks which consist of two steps directly along the axes have a visited lattice point directly between the first and last points of the walk, so those two point are not visible from each other. Thus a(2) = 12 - 4 = 8. a(3) = 24 as there are thirty-six 3-step SAWs which include four walks directly along the axes which have a first point that is not visible from the last. In the first quadrant there is one other walk whose second-step path is intersected by the line between the first and last points of the walk. This walk is: . .---X | X---. . where the first and last points are shown as 'X'. The above walk can be walked in eight ways on the 2D square lattice, so the total number of walks where the first point is visible from the last is 36 - 4 - 1*8 = 36 - 12 = 24. a(4) = 48 as there are one hundred 4-step SAWs which include four walks directly along the axes which have a first point that is not visible from the last. In the first quadrant there are six other walks which have either previously visited points directly on the line between the first and last points of the walk, or in which this line intersects the path of previous steps. These walks are: . X .---X X | | | @---. @ @---. .---.---X .---. .---X | | | | | | | X---. X---. X---. X---. X---@ X X---.---. . where the visited points on the line between the first and last points are shown as '@'. Each of the above walks can be walked in eight ways on the 2D square lattice, so the total number of walks where the first point is visible from the last is 100 - 4 - 6*8 = 100 - 52 = 48.
Links
- A. R. Conway et al., Algebraic techniques for enumerating self-avoiding walks on the square lattice, J. Phys A 26 (1993) 1519-1534.
- A. J. Guttmann and A. R. Conway, Self-Avoiding Walks and Polygons, Annals of Combinatorics 5 (2001) 319-345.
Comments