cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A347542 Number of partitions of n into 6 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 44, 65, 92, 130, 178, 244, 326, 435, 571, 747, 964, 1242, 1581, 2009, 2530, 3178, 3962, 4930, 6094, 7518, 9225, 11296, 13768, 16751, 20295, 24546, 29583, 35591, 42685, 51112, 61028, 72757, 86523, 102740, 121720, 144007, 170018, 200461, 235910, 277270
Offset: 6

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 6, nmax}], {x, 0, nmax}], x] // Drop[#, 6] &

Formula

G.f.: Sum_{k>=6} x^k / Product_{j=1..k} (1 - x^j).

A347543 Number of partitions of n into 7 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 66, 95, 134, 186, 255, 345, 461, 611, 801, 1043, 1346, 1727, 2199, 2787, 3508, 4398, 5482, 6809, 8414, 10365, 12711, 15545, 18935, 23006, 27854, 33646, 40513, 48680, 58326, 69748, 83192, 99048, 117650, 139513, 165083, 195034, 229968, 270760
Offset: 7

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 7, nmax}], {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: Sum_{k>=7} x^k / Product_{j=1..k} (1 - x^j).

A347545 Number of partitions of n into 9 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 138, 193, 267, 364, 491, 656, 868, 1139, 1483, 1917, 2461, 3142, 3985, 5030, 6315, 7893, 9817, 12165, 15007, 18451, 22597, 27589, 33565, 40724, 49249, 59410, 71460, 85753, 102632, 122574, 146032, 173638, 206003, 243951, 288296, 340124
Offset: 9

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 9, nmax}], {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: Sum_{k>=9} x^k / Product_{j=1..k} (1 - x^j).

A347547 Number of partitions of n into 10 or more parts.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 194, 270, 368, 499, 667, 887, 1165, 1524, 1973, 2544, 3253, 4143, 5239, 6602, 8268, 10320, 12813, 15859, 19537, 24000, 29359, 35820, 43541, 52795, 63803, 76929, 92476, 110926, 132694, 158414, 188649, 224231, 265916, 314793
Offset: 10

Views

Author

Ilya Gutkovskiy, Sep 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 54; CoefficientList[Series[Sum[x^k/Product[(1 - x^j), {j, 1, k}], {k, 10, nmax}], {x, 0, nmax}], x] // Drop[#, 10] &

Formula

G.f.: Sum_{k>=10} x^k / Product_{j=1..k} (1 - x^j).
Showing 1-4 of 4 results.