A347559 Number of minimum dominating sets in the n-Moebius ladder.
9, 24, 10, 4, 14, 80, 18, 4, 22, 168, 26, 4, 30, 288, 34, 4, 38, 440, 42, 4, 46, 624, 50, 4, 54, 840, 58, 4, 62, 1088, 66, 4, 70, 1368, 74, 4, 78, 1680, 82, 4, 86, 2024, 90, 4, 94, 2400, 98, 4, 102, 2808, 106, 4, 110, 3248, 114, 4, 118, 3720, 122, 4, 126, 4224
Offset: 3
Links
- Eric Weisstein's World of Mathematics, Minimum Dominating Set
- Eric Weisstein's World of Mathematics, Moebius Ladder
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Programs
-
Mathematica
Table[Piecewise[{{9, n == 3}, {n (n + 2), Mod[n, 4] == 0}, {2 n, Mod[n, 2] == 1}, {4, Mod[n, 4] == 2}}, 0], {n, 3, 20}] Join[{9}, LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {24, 10, 4, 14, 80, 18, 4, 22, 168, 26, 4, 30}, 20]] CoefficientList[Series[(-9 - 24 x - 10 x^2 - 4 x^3 + 13 x^4 - 8 x^5 + 12 x^6 + 8 x^7 - 7 x^8 - 2 x^10 - 4 x^11 + 3 x^12)/((-1 + x)^3 (1 + x)^3 (1 + x^2)^3), {x, 0, 20}], x]
Formula
a(n) = n*(n+2) for n == 0 (mod 4).
a(n) = 2*n for n == 1 (mod 2) and n > 3.
a(n) = 4 for n == 2 (mod 4).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12) for n > 3.
G.f.: x^3*(-9 - 24*x - 10*x^2 - 4*x^3 + 13*x^4 - 8*x^5 + 12*x^6 + 8*x^7 - 7*x^8 - 2*x^10 - 4*x^11 + 3*x^12)/((-1 + x)^3*(1 + x)^3*(1 + x^2)^3).