A347563 Binomial complement triangle, T(n,k) = LCM(1,...,n)/binomial(n,k) for 0 <= k <= n, a(0) = T(0,0) = 0, read by rows.
0, 1, 1, 2, 1, 2, 6, 2, 2, 6, 12, 3, 2, 3, 12, 60, 12, 6, 6, 12, 60, 60, 10, 4, 3, 4, 10, 60, 420, 60, 20, 12, 12, 20, 60, 420, 840, 105, 30, 15, 12, 15, 30, 105, 840, 2520, 280, 70, 30, 20, 20, 30, 70, 280, 2520
Offset: 0
Examples
T(7,3) = 12. Triangle T(n,k) begins: 0; 1, 1; 2, 1, 2; 6, 2, 2, 6; 12, 3, 2, 3, 12; 60, 12, 6, 6, 12, 60; 60, 10, 4, 3, 4, 10, 60; 420, 60, 20, 12, 12, 20, 60, 420; 840, 105, 30, 15, 12, 15, 30, 105, 840; 2520, 280, 70, 30, 20, 20, 30, 70, 280, 2520;
Programs
-
Mathematica
Flatten[Table[(LCM@@Range(1,n))/Binomial[n, k], {n, 0, 11}, {k, 0, n}]]
-
PARI
row(n) = vector(n+1, k, k--; lcm([1..n])/binomial(n,k)); \\ Michel Marcus, Sep 13 2021
Formula
T(n,k) = Product_{p<=n} p^u_p, where u_p = i_max - Sum_{i=1..i_max} v_p(i) = Sum_{i=1..i_max} NOT(v_p(i)), with v_p(i) = floor(n/p^i) - floor(k/p^i) - floor((n-k)/p^i) = {0, 1} and i_max = floor(log(n)/log(p)) (using Erdős's method).
Comments