A347570 Table read by antidiagonals upward: the n-th row gives the lexicographically earliest infinite B_n sequence.
1, 1, 2, 1, 2, 3, 1, 2, 4, 4, 1, 2, 5, 8, 5, 1, 2, 6, 14, 13, 6, 1, 2, 7, 22, 33, 21, 7, 1, 2, 8, 32, 56, 72, 31, 8, 1, 2, 9, 44, 109, 154, 125, 45, 9, 1, 2, 10, 58, 155, 367, 369, 219, 66, 10, 1, 2, 11, 74, 257, 669, 927, 857, 376, 81, 11
Offset: 1
Examples
Table begins: n\k | 1 2 3 4 5 6 7 8 ----+------------------------------------------ 1 | 1, 2, 3, 4, 5, 6, 7, 8, ... 2 | 1, 2, 4, 8, 13, 21, 31, 45, ... 3 | 1, 2, 5, 14, 33, 72, 125, 219, ... 4 | 1, 2, 6, 22, 56, 154, 369, 857, ... 5 | 1, 2, 7, 32, 109, 367, 927, 2287, ... 6 | 1, 2, 8, 44, 155, 669, 2215, 6877, ... 7 | 1, 2, 9, 58, 257, 1154, 4182, 14181, ... 8 | 1, 2, 10, 74, 334, 1823, 8044, 28297, ...
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..241
- Eric Weisstein's World of Mathematics, B2 Sequence.
Programs
-
Python
from itertools import count, islice, combinations_with_replacement def A347570_gen(): # generator of terms asets, alists, klist = [set()], [[]], [1] while True: for i in range(len(klist)-1,-1,-1): kstart, alist, aset = klist[i], alists[i], asets[i] for k in count(kstart): bset = set() for d in combinations_with_replacement(alist+[k],i): if (m:=sum(d)+k) in aset: break bset.add(m) else: yield k alists[i].append(k) klist[i] = k+1 asets[i].update(bset) break klist.append(1) asets.append(set()) alists.append([]) A347570_list = list(islice(A347570_gen(),30)) # Chai Wah Wu, Sep 06 2023
Comments