A347580 Triangle read by rows: T(n,k) is the number of chains of length k in the poset of all arithmetic progressions contained in {1,...,n} of length in the range [1..n-1], ordered by inclusion.
1, 1, 2, 1, 6, 6, 1, 12, 24, 12, 1, 21, 68, 72, 24, 1, 32, 144, 244, 180, 48, 1, 47, 283, 666, 764, 432, 96, 1, 64, 486, 1510, 2436, 2164, 1008, 192, 1, 85, 799, 3117, 6534, 8028, 5816, 2304, 384, 1, 109, 1232, 5860, 15368, 24524, 24516, 15040, 5184, 768
Offset: 1
Examples
Triangle begins: n/k 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 1 2 3 1 6 6 4 1 12 24 12 5 1 21 68 72 24 6 1 32 144 244 180 48 7 1 47 283 666 764 432 96 8 1 64 486 1510 2436 2164 1008 192 9 1 85 799 3117 6534 8028 5816 2304 384 10 1 109 1232 5860 15368 24524 24516 15040 5184 768 11 1 137 1838 10418 33049 65402 84284 70992 37760 11520 1536 12 1 167 2611 17420 65706 157010 250332 270996 197280 92608 25344 3072
Links
- M. K. Goh, J. Hamdan, and J. Saks, The lattice of arithmetic progressions, arXiv:2106.05949 [math.CO], 2021. See Table 2 p. 7.
Programs
-
Mathematica
t[n_, k_] := If[k == 1, n, Sum[2(n-(k-1) r), {r, 1, Quotient[n-1, k-1]}]]; f[n_, k_] := If[k == 1, n, t[n, k]/2]; T[n_, k_] := T[n, k] = If[k == 1, 1, Sum[f[n, i] T[i, k-1], {i, 1, n-1}]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2021, from PARI code *)
-
PARI
t(n, k) = if (k==1, n, sum(r=1, (n-1)\(k-1), 2*(n-(k-1)*r))); \\ A338993 f(n, k) = if (k==1, n, t(n,k)/2); T(n, k) = if (k==1, 1, sum(i=1, n-1, f(n, i)*T(i, k-1))); \\ Michel Marcus, Sep 11 2021
Comments