cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347606 Number of partitions of n^n into exactly n parts.

Original entry on oeis.org

0, 1, 2, 61, 117874, 33219689231, 2559960025059106420, 85975912953927216830024650654, 1841153609473379088124269084031755459049386
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = polcoef(prod(k=1, n, 1/(1-x^k+x*O(x^(n^n-n)))), n^n-n);

Formula

a(n) = [x^(n^n-n)] Product_{k=1..n} 1/(1-x^k).

A347618 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into n or more parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 4, 1, 0, 1, 1, 21, 25, 1, 0, 1, 1, 230, 2996, 201, 1, 0, 1, 1, 8348, 18004286, 1741256, 1773, 1, 0, 1, 1, 1741629, 133978259344766, 365749566865192, 3163112106, 16751, 1, 0, 1, 1, 4351078599, 233202632378520643600874780, 61847822068260244309086870896081, 1606903190858354687391986, 15285150382556, 165083, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,       1,               1, ...
  1, 1,   1,       1,               1, ...
  0, 1,   4,      21,             230, ...
  0, 1,  25,    2996,        18004286, ...
  0, 1, 201, 1741256, 365749566865192, ...
		

Crossrefs

Columns k=0..3 give A019590(n+1), A000012, A347585, A347604.
Main diagonal gives A347605.

Formula

T(n,k) = [x^(n^k)] Sum_{i>=n} x^i / Product_{j=1..i} (1 - x^j).
T(n,k) = A347615(n,k) + A347617(n,k) - A238016(n,k).

A347604 Number of partitions of n^3 into n or more parts.

Original entry on oeis.org

1, 1, 21, 2996, 1741256, 3163112106, 15285150382556, 175943559746571618, 4453575699565108152534, 233202632378520005314974035, 24061467864032622392081524591073, 4700541557913558825449308701662220085, 1681375219875327721201831964319709743701981
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Crossrefs

Formula

a(n) = [x^(n^3)] Sum_{k>=n} x^k / Product_{j=1..k} (1 - x^j).
a(n) = A128854(n) + A304176(n) - A238608(n).
Showing 1-3 of 3 results.