cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347608 Number of interlacing triangles of size n.

Original entry on oeis.org

1, 2, 20, 1744, 2002568, 42263042752, 21686691099024768, 344069541824691045987328, 226788686879114461294165127878656
Offset: 1

Views

Author

James B. Sidoli, Sep 08 2021

Keywords

Comments

An interlacing triangle of size n is a triangular array of the numbers 1, 2, ..., (n+1)*n/2 such that if T(i,j) denotes the j-th number in the i-th row then either T(i-1,j+1) < T(i,j) < T(i-1,j) or T(i-1,j) < T(i,j) < T(i-1,j+1) for 1 < i <= n and 1 <= j <= n-i+1.
Generalizes A003121 for the case when rows are not strictly increasing. See comment from Mar 25 2012 and comment from Dec 02 2014.

Examples

			For n = 2, a(2) = 2. The interlacing triangles are given below:
    2             2
  1   3   and   3   1.
		

Crossrefs

Cf. A003121.

Programs

  • Sage
    def interlacing(n):
        C_2=[]
        part=[j for j in range(n-1,-1,-1)]
        box=[]
        big_box=[]
        pos=0
        d=0
        C_2_star=[]
        for g in Words([0,1],n*(n-1)/2).list():
            C_2.append(list(g))
        for h in C_2:
            relations=[]
            pos=0
            big_box=[]
            for j in range(len(part)-1):
                for k in list(h)[pos:pos+part[j]]:
                    box.append(k)
                big_box.append(box)
                box=[]
                pos=pos+part[j]
            x=0
            for k in range(1,len(big_box)):
                for r in range(len(big_box[k])):
                    if big_box[k][r]==1 and big_box[k-1][r]==0 and big_box[k-1][r+1]==0 or big_box[k][r]==0 and big_box[k-1][r]==1 and big_box[k-1][r+1]==1:
                        continue
                    else:
                        x=x+1
            if x==(n-1)*(n-2)/2:
                q=q+1
                C_2_star.append(big_box)
        position=range(n*(n+1)/2)
        for tri in C_2_star:
            P=[]
            relations=[]
            counter=0
            collect=[]
            for j in range(len(tri)):
                for r in range(len(tri[j])):
                    if tri[j][r]==0:
                        relations.append([position[counter],position[counter+n-j]])
                        relations.append([position[counter+n-j],position[counter+1]])
                    if tri[j][r]==1:
                        relations.append([position[counter+n-j],position[counter]])
                        relations.append([position[counter+1],position[counter+n-j]])
                    counter=counter+1
                counter=counter+1
            P=Poset([range(n*(n+1)/2),relations])
            d=d+P.linear_extensions().cardinality()
        return d

Extensions

a(7)-a(9) from Dylan Nelson, May 09 2022