cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: James B. Sidoli

James B. Sidoli's wiki page.

James B. Sidoli has authored 1 sequences.

A347608 Number of interlacing triangles of size n.

Original entry on oeis.org

1, 2, 20, 1744, 2002568, 42263042752, 21686691099024768, 344069541824691045987328, 226788686879114461294165127878656
Offset: 1

Author

James B. Sidoli, Sep 08 2021

Keywords

Comments

An interlacing triangle of size n is a triangular array of the numbers 1, 2, ..., (n+1)*n/2 such that if T(i,j) denotes the j-th number in the i-th row then either T(i-1,j+1) < T(i,j) < T(i-1,j) or T(i-1,j) < T(i,j) < T(i-1,j+1) for 1 < i <= n and 1 <= j <= n-i+1.
Generalizes A003121 for the case when rows are not strictly increasing. See comment from Mar 25 2012 and comment from Dec 02 2014.

Examples

			For n = 2, a(2) = 2. The interlacing triangles are given below:
    2             2
  1   3   and   3   1.
		

Crossrefs

Cf. A003121.

Programs

  • Sage
    def interlacing(n):
        C_2=[]
        part=[j for j in range(n-1,-1,-1)]
        box=[]
        big_box=[]
        pos=0
        d=0
        C_2_star=[]
        for g in Words([0,1],n*(n-1)/2).list():
            C_2.append(list(g))
        for h in C_2:
            relations=[]
            pos=0
            big_box=[]
            for j in range(len(part)-1):
                for k in list(h)[pos:pos+part[j]]:
                    box.append(k)
                big_box.append(box)
                box=[]
                pos=pos+part[j]
            x=0
            for k in range(1,len(big_box)):
                for r in range(len(big_box[k])):
                    if big_box[k][r]==1 and big_box[k-1][r]==0 and big_box[k-1][r+1]==0 or big_box[k][r]==0 and big_box[k-1][r]==1 and big_box[k-1][r+1]==1:
                        continue
                    else:
                        x=x+1
            if x==(n-1)*(n-2)/2:
                q=q+1
                C_2_star.append(big_box)
        position=range(n*(n+1)/2)
        for tri in C_2_star:
            P=[]
            relations=[]
            counter=0
            collect=[]
            for j in range(len(tri)):
                for r in range(len(tri[j])):
                    if tri[j][r]==0:
                        relations.append([position[counter],position[counter+n-j]])
                        relations.append([position[counter+n-j],position[counter+1]])
                    if tri[j][r]==1:
                        relations.append([position[counter+n-j],position[counter]])
                        relations.append([position[counter+1],position[counter+n-j]])
                    counter=counter+1
                counter=counter+1
            P=Poset([range(n*(n+1)/2),relations])
            d=d+P.linear_extensions().cardinality()
        return d

Extensions

a(7)-a(9) from Dylan Nelson, May 09 2022