A347617 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into exactly n parts.
0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 4, 7, 1, 0, 1, 1, 8, 61, 34, 1, 0, 1, 1, 16, 547, 1906, 192, 1, 0, 1, 1, 32, 4921, 117874, 91606, 1206, 1, 0, 1, 1, 64, 44287, 7478386, 53830967, 6023602, 8033, 1, 0, 1, 1, 128, 398581, 477568114, 33219689231, 43054503928, 505853354, 55974, 1, 0
Offset: 0
Examples
Square array begins: 0, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 4, 8, 16, ... 0, 1, 7, 61, 547, 4921, ... 0, 1, 34, 1906, 117874, 7478386, ... 0, 1, 192, 91606, 53830967, 33219689231, ...
Crossrefs
Programs
-
PARI
T(n, k) = if(k==0, n==1, polcoef(prod(j=1, n, 1/(1-x^j+x*O(x^(n^k-n)))), n^k-n));
Formula
T(n,k) = [x^(n^k-n)] Product_{j=1..n} 1/(1-x^j).