cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347704 Number of even-length integer partitions of n with integer alternating product.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 6, 4, 11, 8, 18, 13, 33, 22, 49, 38, 79, 58, 122, 90, 186, 139, 268, 206, 402, 304, 569, 448, 817, 636, 1152, 907, 1612, 1283, 2220, 1791, 3071, 2468, 4162, 3409, 5655, 4634, 7597, 6283, 10171, 8478, 13491, 11336, 17906, 15088, 23513, 20012
Offset: 0

Views

Author

Gus Wiseman, Sep 17 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(2) = 1 through a(9) = 8 partitions:
  (11)  (21)  (22)    (41)    (33)      (61)      (44)        (63)
              (31)    (2111)  (42)      (2221)    (62)        (81)
              (1111)          (51)      (4111)    (71)        (3321)
                              (2211)    (211111)  (2222)      (4221)
                              (3111)              (3221)      (6111)
                              (111111)            (3311)      (222111)
                                                  (4211)      (411111)
                                                  (5111)      (21111111)
                                                  (221111)
                                                  (311111)
                                                  (11111111)
		

Crossrefs

Allowing any alternating product >= 1 gives A000041, reverse A344607.
Allowing any alternating product gives A027187, odd bisection A236914.
The Heinz numbers of these partitions are given by A028260 /\ A347457.
The reverse and reciprocal versions are both A035363.
The multiplicative version (factorizations) is A347438, reverse A347439.
The odd-length instead of even-length version is A347444.
Allowing any length gives A347446.
A034008 counts even-length compositions, ranked by A053754.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]