A347704 Number of even-length integer partitions of n with integer alternating product.
1, 0, 1, 1, 3, 2, 6, 4, 11, 8, 18, 13, 33, 22, 49, 38, 79, 58, 122, 90, 186, 139, 268, 206, 402, 304, 569, 448, 817, 636, 1152, 907, 1612, 1283, 2220, 1791, 3071, 2468, 4162, 3409, 5655, 4634, 7597, 6283, 10171, 8478, 13491, 11336, 17906, 15088, 23513, 20012
Offset: 0
Keywords
Examples
The a(2) = 1 through a(9) = 8 partitions: (11) (21) (22) (41) (33) (61) (44) (63) (31) (2111) (42) (2221) (62) (81) (1111) (51) (4111) (71) (3321) (2211) (211111) (2222) (4221) (3111) (3221) (6111) (111111) (3311) (222111) (4211) (411111) (5111) (21111111) (221111) (311111) (11111111)
Crossrefs
Programs
-
Mathematica
altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}]
Comments