A347727 a(1)=2; then a(n) is the least integer > a(n-1) such that 2 is the largest element in the continued fraction for 1/a(1) + 1/a(2) + ... + 1/a(n).
2, 6, 18, 102, 40936, 4252528, 7112715120
Offset: 1
Examples
contfrac(1/2 + 1/6 + 1/18 + 1/102 + 1/40936) = [0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2] and 1/2 + 1/6 + 1/18 + 1/102 + 1/40936 = sqrt(3) - 1.0000002354...
Crossrefs
Cf. A160390.
Programs
-
Mathematica
a[1] = 2; a[n_] := a[n] = Module[{k = a[n - 1] + 1, s = Sum[1/a[k], {k, 1, n - 1}]}, While[Max[ContinuedFraction[s + 1/k]] != 2, k++]; k]; Array[a, 6] (* Amiram Eldar, Sep 11 2021 *)
Extensions
a(7) from Jon E. Schoenfield, Sep 11 2021
Comments