A347773 Square array read by antidiagonals downwards: T(n,k) is the smallest positive integer whose n-th power is the sum of k n-th powers of positive integers, or 0 if no such number exists.
1, 2, 1, 3, 5, 1, 4, 3, 0, 1, 5, 2, 6, 0, 1, 6, 4, 7, 422481, 0, 1, 7, 3, 4, 353
Offset: 1
Examples
Table begins: n\k | 1 2 3 4 5 6 7 8 ----+---------------------------------------- 1 | 1 2 3 4 5 6 7 8 2 | 1 5 3 2 4 3 4 4 3 | 1 0 6 7 4 3 5 2 4 | 1 0 422481 353 5 3 9 13 5 | 1 0 ? 144 72 12 23 14 6 | 1 0 ? ? ? ? 1141 251 7 | 1 0 ? ? ? ? 568 102 8 | 1 0 ? ? ? ? ? 1409 T(2,5) = 4 because 4^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 and there is no smaller square that is the sum of 5 positive squares. T(4,3) = 422481 because 422481^4 = 95800^4 + 217519^4 + 414560^4 and there is no smaller 4th power that is the sum of 3 positive 4th powers. T(7,7) = 568 because 568^7 = 127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7 and there is no smaller 7th power that is the sum of 7 positive 7th powers.
Links
- Ed Pegg Jr., Power Sums, Math Games, November 13 2006.
- James Waldby, A Table of Fifth Powers equal to Sums of Five Fifth Powers, 2009.
- Eric Weisstein's World of Mathematics, Euler's sum of powers conjecture
- Eric Weisstein's World of Mathematics, Diophantine Equation--3rd Powers
- Eric Weisstein's World of Mathematics, Diophantine Equation--4th Powers
- Eric Weisstein's World of Mathematics, Diophantine Equation--5th Powers
- Eric Weisstein's World of Mathematics, Diophantine Equation--6th Powers
- Eric Weisstein's World of Mathematics, Diophantine Equation--7th Powers
- Eric Weisstein's World of Mathematics, Diophantine Equation--8th Powers
- Wikipedia, Euler's sum of powers conjecture
Crossrefs
Cf. A134341 (for a(33) = T(5,4) = 144).
Programs
-
PARI
/* return 0 instead of 1 for n=1, and oo loop when T(n, k)=0 */ A347773(p, n, s, m)={ /* Check whether s can be written as sum of n positive p-th powers not larger than m^p. If so, return the base a of the largest term a^p. */ s>n*m^p && return; n==1&&return(ispower(s, p, &n)*n); /* if s and m are not given, s>=n and m are arbitrary. */ !s&&for(m=round(sqrtn(n, p)), 9e9, A347773(p, n, m^p, m-1)&&return(m)); for(a=ceil(sqrtn(s\n, p)), min(sqrtn(max(0, s-n+1), p), m), A347773(p, n-1, s-a^p, a)&&return(a)); } /* after M. F. Hasler in A007666 */ /* Just enter "A347773(n, k)" to get T(n, k) */
Comments