cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347802 Expansion of ( Sum_{k>=0} k^2 * q^(k^2) )^3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 12, 0, 0, 48, 0, 27, 64, 0, 216, 0, 0, 432, 48, 243, 0, 384, 972, 0, 768, 0, 864, 804, 0, 3456, 600, 0, 0, 1968, 3888, 1350, 3072, 0, 5508, 0, 0, 7776, 2400, 6075, 1728, 9600, 1944, 0, 4096, 7776, 21600, 2022, 0, 3456, 17424, 0, 13824, 21552, 0, 19521, 0, 31104, 15984, 0, 0, 21600, 34896, 11907
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, (i^2+j^2+k^2==n)*(i*j*k)^2)));
    
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=0, sqrtint(N), k^2*x^k^2)^3))

Formula

a(n) is sum of i^2 * j^2 * k^2 for positive integers i,j,k such that i^2+j^2+k^2=n.