cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347812 Number of n-dimensional lattice walks from {2}^n to {0}^n using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1.

Original entry on oeis.org

1, 1, 25, 211075, 1322634996717, 16042961630858858915656, 286729345864079773218271997053157611, 25868451537111690721940670963124809063875212336403319, 3742158706432626794575922563227094346392414743343045621639247710036163317
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2021

Keywords

Comments

Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding.

Crossrefs

Row n=2 of A347811.

Programs

  • Maple
    s:= proc(n) option remember;
         `if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1)))
        end:
    b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`(
          add(i^2, i=h) b([2$n]):
    seq(a(n), n=0..7);
  • Mathematica
    s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]];
    b[l_List] := b[l] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l+x}, If[h.h < l.l, b[Sort[h]], 0]], {x, s[n]}]]];
    a[n_] := b[Table[2, {n}]];
    Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Nov 04 2021, after Alois P. Heinz *)