cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347819 Minimal elements for the base-10 representations of the primes greater than 10.

Original entry on oeis.org

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501
Offset: 1

Views

Author

Eric Chen, Sep 16 2021

Keywords

Comments

Sequence is finite with 77 terms, the largest being 5*10^30 + 27 (which can be written 5(0_28)27, where 0_28 means the string of 28 0's). See text file for proof (this file also has proofs for bases 2, 3, 4, 5, 6, 8, 12).
Minimal elements for the base b representations of the primes > b for other bases b: (see the text file for 9 <= b <= 16) (all written in base b)
b=2: {11}
b=3: {12, 21, 111}
b=4: {11, 13, 23, 31, 221}
b=5: {12, 21, 23, 32, 34, 43, 104, 111, 131, 133, 313, 401, 414, 3101, 10103, 14444, 30301, 33001, 33331, 44441, 300031, 10^95 + 13}
b=6: {11, 15, 21, 25, 31, 35, 45, 51, 4401, 4441, 40041}
b=7: {14, 16, 23, 25, 32, 41, 43, 52, 56, 61, 65, 113, 115, 131, 133, 155, 212, 221, 304, 313, 335, 344, 346, 364, 445, 515, 533, 535, 544, 551, 553, 1022, 1051, 1112, 1202, 1211, 1222, 2111, 3031, 3055, 3334, 3503, 3505, 3545, 4504, 4555, 5011, 5455, 5545, 5554, 6034, 6634, 11111, 11201, 30011, 30101, 31001, 31111, 33001, 33311, 35555, 40054, 100121, 150001, 300053, 351101, 531101, 1100021, 33333301, 5100000001, 33333333333333331} (conjectured, not proven)
b=8: {13, 15, 21, 23, 27, 35, 37, 45, 51, 53, 57, 65, 73, 75, 107, 111, 117, 141, 147, 161, 177, 225, 255, 301, 343, 361, 401, 407, 417, 431, 433, 463, 467, 471, 631, 643, 661, 667, 701, 711, 717, 747, 767, 3331, 3411, 4043, 4443, 4611, 5205, 6007, 6101, 6441, 6477, 6707, 6777, 7461, 7641, 47777, 60171, 60411, 60741, 444641, 500025, 505525, 3344441, 4444477, 5500525, 5550525, 55555025, 444444441, 744444441, 77774444441, 7777777777771, 555555555555525, (10^220-1)/9*40 + 7}.
Equivalently: primes > 10 such that no proper substring (i.e., deleting any positive number of digits) is again a prime > 10. - M. F. Hasler, May 03 2022

Examples

			277 is in this sequence because none of 2, 7, 27, 77 is a prime > 10.
857 is in this sequence because none of 8, 5, 7, 85, 87, 57 is a prime > 10.
991 is in this sequence because none of 9, 1, 99, 91 is a prime > 10.
149 is not in this sequence because 19 is subsequence of 149 and 19 is a prime > 10.
389 is not in this sequence because 89 is subsequence of 389 and 89 is a prime > 10.
439 is not in this sequence because 43 is subsequence of 439 and 43 is a prime > 10.
		

Crossrefs

Cf. A071062 (primes > 10 are not required).
Minimal sets for other sets: A071070 (for composites), A071071 (powers of 2), A071072 (multiples of 4), A071073 (multiples of 3), A111055 (primes of the form 4*n+1), A111056 (primes of the form 4*n+3), A114835 (palindromic primes), A130448 (minimal set of squares).

Programs

  • PARI
    a(n, k, b)=v=[]; for(r=1, length(digits(n, b)), if(r+length(digits(k, 2))-length(digits(n, b))>0 && digits(k, 2)[r+length(digits(k, 2))-length(digits(n, b))]==1, v=concat(v, digits(n, b)[r]))); fromdigits(v, b)
    iss(n, b)=for(k=1, 2^length(digits(n, b))-2, if(ispseudoprime(a(n, k, b)) && a(n, k, b)>b, return(0))); 1
    is(n, b=10)=isprime(n) && n>b && iss(n, b) \\ Test whether n is a minimal element for the base b representations of the primes > b. Default value b = 10 for this sequence.
    select( {is_A347819(n,b=10)=for(L=2, #n=digits(n,b), forvec(d=vector(L, i, [1,#n]), n[d[1]]&& isprime(fromdigits(vecextract(n,d),b))&& return(L==#n), 2))}, [1..8888]) \\ Better select among primes([1,N]). - M. F. Hasler, May 03 2022

Extensions

Edited by M. F. Hasler, May 03 2022